Weak form

By following the method of weighted residuals, we multiply the governing differential equations 1.4 in residual form by a sutable test functions $ \delta$$ u$, satisfying the homogeneous boundary conditions on $ \Gamma_u$

$\displaystyle \int_\Omega \delta$$ u$$\displaystyle \cdot \left(
\nabla \cdot\mbox{\boldmath $\sigma$} + F \right)\ d\Omega = \mbox{\boldmath $0$}
$

By applying the Green's formula, we arrive at

$\displaystyle \int_\Omega\nabla \delta$$ u$$\displaystyle \cdot$$ \sigma$$\displaystyle \ d\Omega =
\int_\Omega\delta$$ u$$\displaystyle \cdot$$ F$$\displaystyle \ d\Omega + \int_\Gamma\delta$$ u$$\displaystyle \cdot$$ \sigma$$ n$$\displaystyle \ d\Gamma
$

Then we can substitute for the stresses and tractions and taking into account the symmetry of stress tensor ( $ \sigma=C$ $ \varepsilon $$ )$

$\displaystyle \int_\Omega\nabla ^s\delta$$\displaystyle \mbox{\boldmath$u$}$$\displaystyle \cdot$$\displaystyle \mbox{\boldmath$C$}$$\displaystyle \mbox{\boldmath$\varepsilon $}$$\displaystyle \ d\Omega =
\int_\Omega\delta$$\displaystyle \mbox{\boldmath$u$}$$\displaystyle \cdot$$\displaystyle \mbox{\boldmath$F$}$$\displaystyle \ d\Omega + \int_\Gamma\delta$$\displaystyle \mbox{\boldmath$u$}$$\displaystyle \cdot$$\displaystyle \mbox{\boldmath$t$}$$\displaystyle \ d\Gamma
$ (1.5)

Or, equaivalently using Voight's notation

$\displaystyle \int_\Omega\delta\tilde{\varepsilon }^T\tilde{\mbox{\boldmath$D$}...
...}\ d\Omega + \int_\Gamma\delta\mbox{\boldmath$u$}^T\mbox{\boldmath$t$}\ d\Gamma$ (1.6)

Note: this is equaivalent to the principle of virtual displacements. For hyperelastic material, the weak form is identical to the principle of minimum potential energy.



Borek Patzak 2017-12-30