2.8 Coupled heat and mass transport material model - HeMoKunzel

The presented formulation is based on the work of Kuenzel [16]. The model is suitable for problems with dominating water diffusion and negligible water convection. The governing equations for temperature and humidity reads

∂Q-  =  ∂Q-∂T-= Cv ∂T-= - ∇qT = ∇ (λ∇T )+ hv∇ (δp∇ (Hpsat))            (287)
∂t      ∂T  ∂t     ∂t
∂w-  =  ∂w-∂H- = - ∇qH = ∇ (DH ∇H + δp∇ (Hpsat))                      (288)
∂t      ∂H  ∂t





T (K) Temperature
H (-) Relative humidity 0-1



∂Q-
∂T Cv J/K/m3 Heat storage capacity per volume
∂w-
∂H kg/m3 Moisture storage capacity - sorption isotherm
Q J/m3 Total amount of heat in unit volume
qT W/m2 Heat flux
λ W/m/K Thermal conductivity
hv J/kg Evaporation enthalpy of water
δp kg/m/s/Pa Water vapour permeability
psat Pa Water vapour saturation pressure
w kg/m3 Moisture content
DH kg/m/s Liquid conduction coefficient
Dw m2/s Water diffusivity




Table 73: Parameters from Kunzel’s model.

Numerical solution leads to the system of equations

[ K     K     ]{  r  }   [ C     C    ] { ˙r  }   {  q  }
  K TT  K TH     r T   +   CT T  C TH     ˙rT   =    qT   ,             (289)
    HT    HH       H        HT    HH       H         H

where

       ∫   T                    ∫   T
KT T =  ΩB  kT TBd Ω,    KT H =  ΩB  kThBd Ω,                      (290)
       ∫                        ∫
K    =    BT k  Bd Ω,    K    =   BT k  Bd Ω,                      (291)
  HT    Ω     hT           HH    Ω    hh
       ∫                       ∫
CT T =   N TcTTN d Ω,    CTH =    N TcThN dΩ,                      (292)
        Ω                       Ω
       ∫                        ∫
           T                        T
CHT  =  ΩN   chTN d Ω,    CHH  =  ΩN  chhN dΩ,                      (293)
     ∫                    ∫
q  =    N T q dΓ ,   q  =    N TqhdΓ ,                         (294)
 T    Γ 2   T         H    Γ 2

where

                            Δpsat
kT T  =  λ(w)+ hv ⋅δp(T )⋅H ⋅-ΔT--(T),                       (295)
k     =  h ⋅δ (T)⋅p   (T ),                                   (296)
 TH       v  p     sat
kHT   =  δp(T)⋅H ⋅ Δpsat(T),                                (297)
                   ΔT
kHH   =  Dw (H) ⋅ Δw-(H )+ δp(T )⋅psat(T),                    (298)
                 ΔH
 cT T  =  Cs ⋅ρ+ Cw ⋅w,                                      (299)
cTH   =  0,                                                 (300)
cHT   =  0,                                                 (301)
         Δw
cHH   =  ΔH--(H).                                           (302)

Note, that conductivity matrix K is unsymmetric hence unsymmetric matrix storage needs to be used (smtype).

The model parameters are summarized in Tab. 74.




Description

Coupled heat and mass transfer material model



Record Format

HeMoKunzel num(in) # d(rn) # iso_type(in) # iso_wh(rn) # mu(rn) # permeability_type(in) # A(rn) # lambda0(rn) # b(rn) # cs(rn) # [ pl(rn) #] [ rhoH2O(rn) #] [ cw(rn) #] [ hv(rn) #]

Parameters

-num material model number

-d bulk density of dry building material [kg/m3]

-iso_type=0 is isotherm from Hansen needing iso_n, iso_a, =1 is Kunzel which needs iso_b

-iso_wh maximum adsorbed water content [kg/m3]

-mu water vapor diffusion resistance [-]

-permeability_type =0 is Multilin_h needing perm_h, perm_Dw(h), =1 is Multilin_wV needs perm_wV, perm_DwwV, =2 is Kunzelperm needs A as water absorption coefficient [kg/m/s0.5]

-lambda0rn thermal conductivity [W/m/K]

-b thermal conductivity supplement [-]

-cs specific heat capacity of the building material [J/kg/K]

-[pl] ambient air pressure [Pa], default = 101325

-[rhoH2O] water density [kg/m3], default = 1000

-[cw] specific heat capacity of liquid water, default = 4183

-[hv] latent heat of water phase change [J/kg], default = 2.5e+6

Supported modes

_2dHeMo, _3dHeMo




Table 74: Coupled heat and mass transfer material model Kunzel - summary.