[1] H.D. Baehr and K. Stephan: Heat and Mass Transfer, Springer, 2006.
[2] Z.P. Bažant, L.J. Najjar. Nonlinear water diffusion in nonsaturated concrete. Materials and Structures, 5:3–20, 1972.
[3] Z.P. Bažant, J. Planas: Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, 1998.
[4] S. Brunauer, J. Skalny, E.E. Bodor: J. Colloid Interface Sci, 30, 1969.
[5] D.P. Bentz: CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0., NIST Building and Fire Research Laboratory, Gaithersburg, Maryland, Technical report, 2005.
[6] M. Cervera, J. Oliver, and T. Prato: Thermo-chemo-mechanical model for concrete. I: Hydration and aging. Journal of Engineering Mechanics ASCE, 125(9):1018–1027, 1999.
[7] D. Gawin, F. Pesavento, and B. A. Schrefler: Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering, 67(3):299–331, 2006.
[8] P. Grassl and M. Jirásek. Damage-plastic model for concrete failure. International Journal of Solids and Structures, 43:7166–7196, 2006.
[9] P. Grassl, D. Xenos, U. Nyström, R. Rempling and K. Gylltoft. CDPM2: A damage-plasticity approach to modelling the failure of concrete. International Journal of Solids and Structures, 50:3805–3816, 2013.
[10] P. Grassl and M. Jirásek. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. International Journal of Solids and Structures, 47: 957–968, 2010.
[11] M.G. Alberti, A. Enfedaque, J.C. Gálvez and E. Reyes. Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach. Composites Part B: Engineering, 111: 200–210, 2017.
[12] P. Grassl, D. Xenos, M. Jirásek and M. Horák. Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries. International Journal of Solids and Structures, 51: 3239—3251, 2014.
[13] M. Jirásek, Z.P. Bažant: Inelastic analysis of structures, John Wiley, 2001.
[14] P.F. Hansen: Coupled Moisture/Heat Transport in Cross Sections of Structures, Beton og Konstruktionsinstituttet, 1985.
[15] E. Hoek and Z.T. Bieniawski: Brittle Rock Fracture Propagation In Rock Under Compression, International Journal of Fracture Mechanics 1(3), 137-155, 1965.
[16] H.M. Künzel, H.M.: Simultaneous heat and moisture transport in building components, Ph.D. thesis, IRB-Verlag, 1995.
[17] M. Jirásek: Comments on microplane theory, Mechanics of Quasi-Brittle Materials and Structures, ed. G. Pijaudier-Cabot, Z. Bittnar, and B. Gérard, Hermčs Science Publications, Paris, 1999, pp. 57-77.
[18] B. Lourenco, J.G. Rots: Multisurface Interface Model for Analysis of Masonry Structures, Journal of Engng Mech, vol. 123, No. 7, 1997.
[19] M. Ortiz, E.P. Popov: Accuracy and stability of integration algorithms for elasto-plastic constitutive relations, Int. J. Numer. Methods Engrg, 21, 1561-1576, 1985.
[20] B. Patzák: OOFEM home page, http://www.oofem.org, 2003.
[21] J.C. Simo, T.J.R. Hughes: Computational Inelasticity, Springer, 1998.
[22] J. Ruiz, A. Schindler, R. Rasmussen, P. Kim, G. Chang: Concrete temperature modeling and strength prediction using maturity concepts in the FHWA HIPERPAV software, 7th international conference on concrete pavements, Orlando (FL), USA, 2001.
[23] J.C. Simo, J.G. Kennedy, S. Govindjee: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms, Int. J. Numer. Methods Engrg, 26, 2161-2185, 1988.
[24] A. K. Schindler and K. J. Folliard: Heat of Hydration Models for Cementitious Materials, ACI Materials Journal, 102, 24 - 33, 2005.
[25] J.C. Simo, K.S. Pister: Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp Methods in Applied Mech and Engng, 46, 201-215, 1984.
[26] V. Šmilauer and T. Krejčí, Multiscale Model for Temperature Distribution in Hydrating Concrete, International Journal for Multiscale Computational Engineering, 7 (2), 135-151, 2009.
[27] J.H.P. de Vree, W.A.M. Brekelmans, and M.A.J. van Gils: Comparison of nonlocal approaches in continuum damage mechanics. Computers and Structures 55(4), 581–588, 1995.
[28] Y. Xi, Z.P. Bažant, H.M. Jennings: Moisture Diffusion in Cementitious Materials, Advn Cem Bas Mat, 1994.
[29] Z.P. Bažant, S. Prasannan: Solidification theory for concrete creep. I: Formulation. Journal of Engineering Mechanics 115(8), 1691–1703, 1989.
[30] Z.P. Bažant, A.B. Hauggaard, F. Ulm: Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of Engineering Mechanics 123(11), 1188–1194, 1997.
[31] M. Jirásek, P. Havlásek: Microprestress-Solidification Theory of Concrete Creep: Reformulation and Improvement. Cement and Concrete Research 60, 51–62, 2014.
[32] International Federation for Structural Concrete (fib): The fib Model Code for Concrete Structures 2010.
[33] P. Grassl and T. Davies: Lattice modelling of corrosion induced cracking and bond in reinforced concrete. Cement and Concrete Composites, 33, 918-924, 2011.
[34] I. Athanasiadis, S. Wheeler and P. Grassl: Hydro-mechanical network modelling of particulate composites. International Journal of Solids and Structures 130-131, 49-60, 2018.