Non-stationary nonlinear transport model

In a nonlinear model, Eq. (2.8) is modified to
$\displaystyle \mbox{\boldmath$K$}$$\displaystyle ($$\displaystyle \mbox{\boldmath$r$}$$\displaystyle )$   $\displaystyle \mbox{\boldmath$r$}$$\displaystyle +$   $\displaystyle \mbox{\boldmath$C$}$$\displaystyle ($$\displaystyle \mbox{\boldmath$r$}$$\displaystyle )\frac{{\rm d}\mbox{\boldmath$r$}}{{\rm d} t} = \mbox{\boldmath$F$}(\mbox{\boldmath$r$}),$     (2.16)

Time discretization is the same as in but the assumption in Eq. (2.15) is not true anymore. Let us assume that Eq. (2.16) should be satisfied at time $ \tau\in\langle t,t+\Delta t \rangle$. By substituting of into Eq. (2.16) leads to the following equation

$\displaystyle \left[(1-\alpha)\mbox{\boldmath$r$}_t + \alpha\mbox{\boldmath$r$}...
...box{\boldmath$r$}_\tau) = \mbox{\boldmath$F$}_{\tau}(\mbox{\boldmath$r$}_\tau).$ (2.17)

Eq. (2.17) is non-linear and the Newton method is used to obtain the solution. First, the Eq. (2.17) is transformed into a residual form with the residuum vector $ R$$ _{\tau}$, which should converge to the zero vector

$\displaystyle \mbox{\boldmath$R$}$$\displaystyle _{\tau} = \left[(1-\alpha)\mbox{\boldmath$r$}_t + \alpha\mbox{\bo...
...- \mbox{\boldmath$F$}_{\tau}(\mbox{\boldmath$r$}_\tau) \to \mbox{\boldmath$0$}.$ (2.18)

A new residual vector at the next iteration, $ R$$ _\tau^{i+1}$, can determined from the previous residual vector, $ R$$ _{\tau}^i$, and its derivative simply by linearization. Since the aim is getting an increment of solution vector, $ \Delta$$ r$$ _{\tau}^i$, the new residual vector $ R$$ _{\tau}^{i+1}$ is set to zero

$\displaystyle \mbox{\boldmath$R$}$$\displaystyle _\tau^{i+1}$ $\displaystyle \approx$ $\displaystyle \mbox{\boldmath$R$}$$\displaystyle _{\tau}^i+\frac{\partial{\mbox{\boldmath$R$}_{\tau}^i}}{\partial\mbox{\boldmath$r$}_t} \Delta\mbox{\boldmath$r$}_{\tau}^i = \mbox{\boldmath$0$},$ (2.19)
$\displaystyle \Delta$   $\displaystyle \mbox{\boldmath$r$}$$\displaystyle _{\tau}^i$ $\displaystyle =$ $\displaystyle - \left[\frac{\partial{\mbox{\boldmath$R$}_{\tau}^i}}{\partial\mbox{\boldmath$r$}_t}\right]^{-1} \mbox{\boldmath$R$}_{\tau}^i.$ (2.20)

Deriving Eq. (2.18) and inserting to Eq. (2.20) leads to
$\displaystyle \mbox{\boldmath$\tilde K$}$$\displaystyle _\tau^i$ $\displaystyle =$ $\displaystyle \frac{\partial{\mbox{\boldmath$R$}_{\tau}^i}}{\partial\mbox{\bold...
...playstyle\frac{1}{\Delta
t}$}\mbox{\boldmath$C$}_{\tau}^i(\mbox{\boldmath$r$}),$ (2.21)
$\displaystyle \Delta$   $\displaystyle \mbox{\boldmath$r$}$$\displaystyle _{\tau}^i$ $\displaystyle =$ $\displaystyle - \left[\mbox{\boldmath$\tilde K$}_\tau^i\right]^{-1} \mbox{\boldmath$R$}_{\tau}^i,$ (2.22)

which gives the resulting increment of the solution vector $ \Delta$   $ r$$ _{\tau}^i$

\begin{displaymath}\begin{split}\Delta \mbox{\boldmath$r$}_{\tau}^i = - \left[\m...
...oldmath$F$}_{\tau}(\mbox{\boldmath$r$}_\tau) \Big\},\end{split}\end{displaymath} (2.23)

and the new total solution vector at time $ t + \Delta t$ is obtained in each iteration
$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _{t+\Delta t}^{i+1}=$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _{t+\Delta t}^{i} + \Delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _{\tau}^i.$     (2.24)

There are two options how to initialize the solution vector at time $ t + \Delta t$. While the first case applies linearization with a known derivative, the second case simply starts from the previous solution vector. The second method in Eq. (2.26) is implemented in OOFEM.

$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _{t+\Delta t}^{0} =$   $\displaystyle \mbox{\boldmath$r$}$$\displaystyle _t + \Delta t\frac{\partial{\mbox{\boldmath$r$}_t}}{\partial t},$     (2.25)
$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _{t+\Delta t}^{0} =$   $\displaystyle \mbox{\boldmath$r$}$$\displaystyle _t.$     (2.26)

Note that the matrices $ K$$ ($$ r$$ _\tau),$   $ C$$ ($$ r$$ _\tau)$ and the vector $ F$$ ($$ r$$ _\tau)$ depend on the solution vector $ r$$ _\tau$. For this reason, the matrices are updated in each iteration step (Newton method) or only after several steps (modified Newton method). The residuum $ R$$ _\tau^{i}$ and the vector $ F$$ _\tau($$ r$$ _\tau)$ are updated in each iteration, using the most recent capacity and conductivity matrices.



Subsections
Borek Patzak 2017-12-30