Arc-length method

We start by assuming the parametrized loading, in which the total external load vector is expressed as

$ f$$\displaystyle ^{ext}(\lambda) = +\lambda$$ f$$\displaystyle ^{ext}_p$

where $ f$$ _p$ is proportional, reference load vector, and $ \lambda$ is load scaling parameter, The arc-length method is based on idea of controlling the length passed along the loading path. For the differential length of loading path we can write

$\displaystyle \Delta l = \sqrt{\Delta\mbox{\boldmath$r$}^T\Delta\mbox{\boldmath$r$}+(c^2\Delta\lambda^2\mbox{\boldmath$f$}^T_p\mbox{\boldmath$f$}_p)}$ (2.3)

where $ c$ is coefficient of generalized metrics used to define $ \Delta l$ (taking into account different units of displacement and load). For selected increment of loading path length $ \Delta l$, we are looking for the equilibrium, where the unknowns are nodal displacements $ r$ and the load scaling parameter $ \lambda$. We have the equilibrium equation and additional scalar equation 2.3:
$\displaystyle \mbox{\boldmath$f$}$$\displaystyle ^{int}($$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _n)$ $\displaystyle =$ $\displaystyle \mbox{\boldmath$f$}$$\displaystyle ^{ext}(\lambda_n$$\displaystyle \mbox{\boldmath$f$}$$\displaystyle _p)$ (2.4)
$\displaystyle \Delta l_n^2$ $\displaystyle =$ $\displaystyle \Delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _n^T\Delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _n+c^2\Delta\lambda^2$$\displaystyle \mbox{\boldmath$f$}$$\displaystyle ^T_p$$\displaystyle \mbox{\boldmath$f$}$$\displaystyle _p$ (2.5)

Figure 2.2: Illustration of Acr-length method
Image arclength

At the end of n-th loading step and i-th iteration the displacement vector can be written as $ r$$ ^i_n =$   $ r$$ ^{i-1}_n+\delta$$ r$ and similarly the load scaling parameter as $ \lambda_n^i = \lambda_n^{i-1}+\delta\lambda$. Substituting this into equilibrium equation 2.4 we get

$ f$$\displaystyle ^{int}($$ r$$\displaystyle _n^{i-1}+\delta$$ r$$\displaystyle ) =$$ f$$\displaystyle ^{ext}((\lambda_n^{i-1}+\delta\lambda)$$ f$$\displaystyle _p)$

By linearization of $ F$$ ^{int}$ around known state $ r$$ _n^{i-1}$ we get

$ f$$\displaystyle ^{int}_n($$ r$$\displaystyle _n^{i-1})+$$ K$$\displaystyle _n^{i-1}\delta$$ r$$\displaystyle =$   $ f$$\displaystyle ^{ext,i-1}+\delta\lambda$$ f$$\displaystyle _p$

and finally for unknown $ \delta$$ r$

$\displaystyle \delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle = \underbrace{(\mbox{\boldmath$K$}_n^{i-1})^{-1}(\mbox{\boldmath$...
...ath$K$}_n^{i-1})^{-1}\mbox{\boldmath$f$}_p}_{\delta\mbox{\boldmath$r$}_\lambda}$ (2.6)

Note that the vectors $ \delta$$ r$$ _r$ and $ \delta$$ r$$ _\lambda$ can be computed and the only unknown remaining is the incremental change of loading parameter $ \delta\lambda$, which could be determined from 2.5
$\displaystyle \Delta l_n^2$ $\displaystyle =$ $\displaystyle (\Delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _n^{i-1}+\delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _r+\delta\lambda\delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _\lambda)^T(\Delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _n^{i-1}+\delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _r+\delta\lambda\delta$$\displaystyle \mbox{\boldmath$r$}$$\displaystyle _\lambda) + c^2(\Delta\lambda_n^{i-1}+\delta\lambda)^2$$\displaystyle \mbox{\boldmath$f$}$$\displaystyle ^T_p$$\displaystyle \mbox{\boldmath$f$}$$\displaystyle _p$ (2.7)

This finally yields a quadratic equation for unknown increment of loading parameter $ \delta\lambda$. The algorithm is summarized in Table [*].


Table 2.2: Newton-Raphson method
Given  
$ f$$ ^{ext}_{n-1},$   $ f$$ _p$  
$ r$$ ^{0}_{n} =$   $ r$$ _{n-1}$  
Evaluate  
$ \;\;\delta$$ r$$ _\lambda = ($$ K$$ _n)^{-1}$$ f$$ _p$  
$ \;\;\Delta\lambda^0=\pm{\Delta l}/{\sqrt{\delta\mbox{\boldmath $r$}_\lambda^T\...
...mbox{\boldmath $r$}_\lambda+c^2\mbox{\boldmath $f$}_p^T\mbox{\boldmath $f$}_p}}$  
$ \;\;\Delta$$ r$$ _n^0 = ($$ K$$ _n)^{-1}(\Delta\lambda$$ f$$ _p) = ($$ K$$ _n)^{-1}((\lambda_n+\Delta\lambda^0)$$ f$$ _p -$   $ f$$ ^{int,0}_n)$  
Repeat for $ i=1,2,\cdots$  
$ \;\;\delta$$ r$$ _\lambda = ($$ K$$ _n^{i-1})^{-1}$$ f$$ _p$  
$ \;\;\delta$$ r$$ _r = ($$ K$$ _n^{i-1})^{-1}(\lambda_n^{i-1}$$ f$$ _p -$$ f$$ ^{int}($$ r$$ _n^{i-1}))$  
$ \;\;$Solve quadratic equation 2.7 for $ \delta\lambda$  
$ \;\;\delta$$ r$$ ^i = \delta$$ r$$ _r+\delta\lambda\delta$$ r$$ _\lambda$  
$ \;\;\Delta$$ r$$ _n^i = \Delta$$ r$$ ^{i-1}+\delta$$ r$$ ^i,\ $   $ r$$ _n^i =$   $ r$$ _n^{i-1}+\delta$$ r$$ ^i$  
$ \;\;\lambda^i = \lambda^{i-1}+\delta\lambda,\ \Delta\Lambda_n^i = \Delta\Lambda_n^{i-1}+\delta\lambda$  
Until convergence reached  


Borek Patzak 2017-12-30