OOFEM  2.4
OOFEM.org - Object Oriented Finite Element Solver
stationarytransportproblem.h
Go to the documentation of this file.
1 /*
2  *
3  * ##### ##### ###### ###### ### ###
4  * ## ## ## ## ## ## ## ### ##
5  * ## ## ## ## #### #### ## # ##
6  * ## ## ## ## ## ## ## ##
7  * ## ## ## ## ## ## ## ##
8  * ##### ##### ## ###### ## ##
9  *
10  *
11  * OOFEM : Object Oriented Finite Element Code
12  *
13  * Copyright (C) 1993 - 2013 Borek Patzak
14  *
15  *
16  *
17  * Czech Technical University, Faculty of Civil Engineering,
18  * Department of Structural Mechanics, 166 29 Prague, Czech Republic
19  *
20  * This library is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU Lesser General Public
22  * License as published by the Free Software Foundation; either
23  * version 2.1 of the License, or (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28  * Lesser General Public License for more details.
29  *
30  * You should have received a copy of the GNU Lesser General Public
31  * License along with this library; if not, write to the Free Software
32  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
33  */
34 
35 #ifndef stationarytransportproblem_h
36 #define stationarytransportproblem_h
37 
38 #include "engngm.h"
39 #include "sparselinsystemnm.h"
40 #include "sparsemtrx.h"
41 #include "primaryfield.h"
42 
44 
45 #define _IFT_StationaryTransportProblem_Name "stationaryproblem"
46 #define _IFT_StationaryTransportProblem_exportfields "exportfields"
47 #define _IFT_StationaryTransportProblem_keepTangent "keeptangent"
48 
49 
50 namespace oofem {
51 class SparseNonLinearSystemNM;
52 
58 {
59 protected:
62  std :: unique_ptr< PrimaryField > UnknownsField;
63 
64  std :: unique_ptr< SparseMtrx > conductivityMatrix;
67 
70 
72 
73 public:
75  StationaryTransportProblem(int i, EngngModel * _master);
78 
79  virtual void solveYourselfAt(TimeStep *tStep);
80  virtual void updateYourself(TimeStep *tStep);
81  virtual void updateComponent(TimeStep *tStep, NumericalCmpn cmpn, Domain *d);
82  virtual double giveUnknownComponent(ValueModeType mode, TimeStep *tStep, Domain *d, Dof *dof);
83  virtual FieldPtr giveField (FieldType key, TimeStep *);
86 
87  virtual void updateDomainLinks();
88 
89  virtual TimeStep *giveNextStep();
91 
93 
94  virtual int checkConsistency();
95 
96  // identification
97  virtual const char *giveInputRecordName() const { return _IFT_StationaryTransportProblem_Name; }
98  virtual const char *giveClassName() const { return "StationaryTransportProblem"; }
99  virtual fMode giveFormulation() { return TL; }
100 
101 protected:
106  virtual void updateInternalState(TimeStep *tStep);
107 };
108 } // end namespace oofem
109 #endif // stationarytransportproblem_h
virtual void updateInternalState(TimeStep *tStep)
Updates IP values on elements.
std::shared_ptr< Field > FieldPtr
Definition: field.h:72
Class and object Domain.
Definition: domain.h:115
SparseNonLinearSystemNM * nMethod
Numerical method used to solve the problem.
FieldType
Physical type of field.
Definition: field.h:60
Class representing meta step.
Definition: metastep.h:62
Total Lagrange.
Definition: fmode.h:44
This class represents stationary transport problem.
The purpose of DataStream abstract class is to allow to store/restore context to different streams...
Definition: datastream.h:54
ValueModeType
Type representing the mode of UnknownType or CharType, or similar types.
Definition: valuemodetype.h:78
This base class is an abstraction for numerical algorithm.
Definition: nummet.h:80
StationaryTransportProblem(int i, EngngModel *_master)
Constructor.
virtual int checkConsistency()
Allows programmer to test some receiver&#39;s internal data, before computation begins.
virtual void solveYourselfAt(TimeStep *tStep)
Solves problem for given time step.
#define _IFT_StationaryTransportProblem_Name
std::unique_ptr< SparseMtrx > conductivityMatrix
virtual void updateComponent(TimeStep *tStep, NumericalCmpn cmpn, Domain *d)
Updates components mapped to numerical method if necessary during solution process.
virtual contextIOResultType saveContext(DataStream &stream, ContextMode mode)
Stores the state of model to output stream.
NumericalCmpn
Type representing numerical component.
Definition: numericalcmpn.h:46
virtual contextIOResultType restoreContext(DataStream &stream, ContextMode mode)
Restores the state of model from output stream.
virtual NumericalMethod * giveNumericalMethod(MetaStep *mStep)
Returns reference to receiver&#39;s numerical method.
SparseMtrxType
Enumerative type used to identify the sparse matrix type.
virtual IRResultType initializeFrom(InputRecord *ir)
Initializes receiver according to object description in input reader.
virtual const char * giveInputRecordName() const
std::unique_ptr< PrimaryField > UnknownsField
This field stores solution vector. For fixed size of problem, the PrimaryField is used...
Class representing vector of real numbers.
Definition: floatarray.h:82
virtual TimeStep * giveNextStep()
Returns next time step (next to current step) of receiver.
IRResultType
Type defining the return values of InputRecord reading operations.
Definition: irresulttype.h:47
virtual fMode giveFormulation()
Indicates type of non linear computation (total or updated formulation).
Class representing the general Input Record.
Definition: inputrecord.h:101
fMode
Type representing the type of formulation (total or updated) of non-linear computation.
Definition: fmode.h:42
virtual void updateDomainLinks()
Updates domain links after the domains of receiver have changed.
virtual double giveUnknownComponent(ValueModeType mode, TimeStep *tStep, Domain *d, Dof *dof)
Returns requested unknown.
long ContextMode
Context mode (mask), defining the type of information written/read to/from context.
Definition: contextmode.h:43
virtual void updateYourself(TimeStep *tStep)
Updates internal state after finishing time step.
virtual FieldPtr giveField(FieldType key, TimeStep *)
Returns the smart pointer to requested field, Null otherwise.
Abstract base class representing the "problem" under consideration.
Definition: engngm.h:181
the oofem namespace is to define a context or scope in which all oofem names are defined.
Abstract class Dof represents Degree Of Freedom in finite element mesh.
Definition: dof.h:93
virtual const char * giveClassName() const
Returns class name of the receiver.
Class representing solution step.
Definition: timestep.h:80
This base class is an abstraction for all numerical methods solving sparse nonlinear system of equati...

This page is part of the OOFEM documentation. Copyright (c) 2011 Borek Patzak
Project e-mail: info@oofem.org
Generated at Tue Jan 2 2018 20:07:31 for OOFEM by doxygen 1.8.11 written by Dimitri van Heesch, © 1997-2011