OOFEM  2.4
OOFEM.org - Object Oriented Finite Element Solver
intmatbilinearcz.h
Go to the documentation of this file.
1 /*
2  *
3  * ##### ##### ###### ###### ### ###
4  * ## ## ## ## ## ## ## ### ##
5  * ## ## ## ## #### #### ## # ##
6  * ## ## ## ## ## ## ## ##
7  * ## ## ## ## ## ## ## ##
8  * ##### ##### ## ###### ## ##
9  *
10  *
11  * OOFEM : Object Oriented Finite Element Code
12  *
13  * Copyright (C) 1993 - 2013 Borek Patzak
14  *
15  *
16  *
17  * Czech Technical University, Faculty of Civil Engineering,
18  * Department of Structural Mechanics, 166 29 Prague, Czech Republic
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #ifndef INTMATBILINEARCZ_H_
36 #define INTMATBILINEARCZ_H_
37 
40 
42 
43 #define _IFT_IntMatBilinearCZ_Name "intmatbilinearcz"
44 #define _IFT_IntMatBilinearCZ_PenaltyStiffness "kn"
45 #define _IFT_IntMatBilinearCZ_g1c "g1c"
46 #define _IFT_IntMatBilinearCZ_g2c "g2c"
47 #define _IFT_IntMatBilinearCZ_mu "mu"
48 #define _IFT_IntMatBilinearCZ_gamma "gamma"
49 #define _IFT_IntMatBilinearCZ_sigf "sigf"
50 #define _IFT_IntMatBilinearCZ_semiexplicit "semiexplicit"
51 
52 
53 namespace oofem {
58 {
59 public:
60  IntMatBilinearCZStatus(int n, Domain * d, GaussPoint * g);
61  virtual ~IntMatBilinearCZStatus();
62 
65 
68 
71 
77 
78  virtual const char *giveClassName() const { return "IntMatBilinearCZStatus"; }
79 
80  virtual void initTempStatus();
81  virtual void updateYourself(TimeStep *tStep);
82 
84  virtual void copyStateVariables(const MaterialStatus &iStatus);
85  virtual void addStateVariables(const MaterialStatus &iStatus);
86 };
87 
88 
95 {
96 public:
97  IntMatBilinearCZ(int n, Domain * d);
98  virtual ~IntMatBilinearCZ();
99 
100 protected:
103  double mGIc; // fracture energy, mode 1
104  double mGIIc; // fracture energy, mode 2
105  double mSigmaF; // max stress
106 
107  double mMu; // loading function parameter
108  double mGamma; // loading function parameter
109 
110  bool mSemiExplicit; // If semi-explicit time integration should be used
111 
112  virtual int checkConsistency();
113 
114 public:
115 
116  virtual int hasNonLinearBehaviour() { return 1; }
117 
118  virtual const char *giveClassName() const { return "IntMatBilinearCZ"; }
119  virtual const char *giveInputRecordName() const { return _IFT_IntMatBilinearCZ_Name; }
120 
121 
122  virtual void giveFirstPKTraction_3d(FloatArray &answer, GaussPoint *gp, const FloatArray &jump,
123  const FloatMatrix &F, TimeStep *tStep);
124 
125  // Dummy implementation, we must rely on numerical computation of the tangent.
126  virtual void give3dStiffnessMatrix_dTdj(FloatMatrix &answer, MatResponseMode rMode, GaussPoint *gp, TimeStep *tStep);
127 
128  virtual bool hasAnalyticalTangentStiffness() const { return false; }
129 
130 private:
131  // Help functions
132  double computeYieldFunction(const double &iTractionNormal, const double &iTractionTang) const;
133  void computeTraction(FloatArray &oT, const FloatArray &iTTrial, const double &iPlastMultInc) const;
134 
135 public:
136  virtual int giveIPValue(FloatArray &answer, GaussPoint *gp, InternalStateType type, TimeStep *tStep);
138  virtual void giveInputRecord(DynamicInputRecord &input);
139 
140  virtual MaterialStatus *CreateStatus(GaussPoint *gp) const { return new IntMatBilinearCZStatus(1, domain, gp); }
141  virtual void printYourself();
142 };
143 } /* namespace oofem */
144 #endif /* INTMATBILINEARCZ_H_ */
#define _IFT_IntMatBilinearCZ_Name
InternalStateType
Type representing the physical meaning of element or constitutive model internal variable.
virtual void updateYourself(TimeStep *tStep)
Update equilibrium history variables according to temp-variables.
GaussPoint * gp
Associated integration point.
virtual void initTempStatus()
Initializes the temporary internal variables, describing the current state according to previously re...
Class and object Domain.
Definition: domain.h:115
Domain * domain
Link to domain object, useful for communicating with other FEM components.
Definition: femcmpnn.h:82
virtual bool hasAnalyticalTangentStiffness() const
Tells if the model has implemented analytical tangent stiffness.
virtual MaterialStatus * CreateStatus(GaussPoint *gp) const
Creates new copy of associated status and inserts it into given integration point.
FloatArray mJumpOld
Discontinuity.
virtual const char * giveClassName() const
virtual void giveInputRecord(DynamicInputRecord &input)
Setups the input record string of receiver.
Definition: femcmpnn.C:77
MatResponseMode
Describes the character of characteristic material matrix.
double mDamageNew
damage variable
virtual void printYourself()
Prints receiver state on stdout. Useful for debugging.
Definition: femcmpnn.h:173
Bilinear cohesive zone model.
virtual int hasNonLinearBehaviour()
Returns nonzero if receiver is non linear.
virtual IRResultType initializeFrom(InputRecord *ir)
Initializes receiver according to object description stored in input record.
Definition: matstatus.h:140
virtual int checkConsistency()
Allows programmer to test some internal data, before computation begins.
Definition: femcmpnn.C:94
FloatMatrix F
Equilibrated deformation gradient in reduced form.
This class implements a structural interface material status information.
FloatArray jump
Equilibrated jump (discontinuity)
Abstract base class representing a material status information.
Definition: matstatus.h:84
IntMatBilinearCZStatus(int n, Domain *d, GaussPoint *g)
Class representing vector of real numbers.
Definition: floatarray.h:82
Implementation of matrix containing floating point numbers.
Definition: floatmatrix.h:94
This class implements associated Material Status for IntMatBilinearCZFagerstrom.
IRResultType
Type defining the return values of InputRecord reading operations.
Definition: irresulttype.h:47
Class representing the general Input Record.
Definition: inputrecord.h:101
virtual void addStateVariables(const MaterialStatus &iStatus)
double mPenaltyStiffness
Material parameters.
Class representing the a dynamic Input Record.
FloatArray mTractionOld
Traction.
virtual const char * giveInputRecordName() const
virtual void copyStateVariables(const MaterialStatus &iStatus)
Functions for MaterialStatusMapperInterface.
Abstract base class for all "structural" interface models.
the oofem namespace is to define a context or scope in which all oofem names are defined.
Class representing integration point in finite element program.
Definition: gausspoint.h:93
double mPlastMultIncNew
Increment of plastic multiplier.
Class representing solution step.
Definition: timestep.h:80
virtual const char * giveClassName() const

This page is part of the OOFEM documentation. Copyright (c) 2011 Borek Patzak
Project e-mail: info@oofem.org
Generated at Tue Jan 2 2018 20:07:29 for OOFEM by doxygen 1.8.11 written by Dimitri van Heesch, © 1997-2011