OOFEM  2.4
OOFEM.org - Object Oriented Finite Element Solver
intmatbilinczfagerstrom.h
Go to the documentation of this file.
1 /*
2  *
3  * ##### ##### ###### ###### ### ###
4  * ## ## ## ## ## ## ## ### ##
5  * ## ## ## ## #### #### ## # ##
6  * ## ## ## ## ## ## ## ##
7  * ## ## ## ## ## ## ## ##
8  * ##### ##### ## ###### ## ##
9  *
10  *
11  * OOFEM : Object Oriented Finite Element Code
12  *
13  * Copyright (C) 1993 - 2013 Borek Patzak
14  *
15  *
16  *
17  * Czech Technical University, Faculty of Civil Engineering,
18  * Department of Structural Mechanics, 166 29 Prague, Czech Republic
19  *
20  * This library is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU Lesser General Public
22  * License as published by the Free Software Foundation; either
23  * version 2.1 of the License, or (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28  * Lesser General Public License for more details.
29  *
30  * You should have received a copy of the GNU Lesser General Public
31  * License along with this library; if not, write to the Free Software
32  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
33  */
34 
35 #ifndef intmatbilinearczmaterialFagerstrom_h
36 #define intmatbilinearczmaterialFagerstrom_h
37 
40 
42 
43 #define _IFT_IntMatBilinearCZFagerstrom_Name "intmatbilinearczfagerstrom"
44 #define _IFT_IntMatBilinearCZFagerstrom_kn "kn"
45 #define _IFT_IntMatBilinearCZFagerstrom_ks "ks"
46 #define _IFT_IntMatBilinearCZFagerstrom_knc "knc"
47 #define _IFT_IntMatBilinearCZFagerstrom_g1c "g1c"
48 #define _IFT_IntMatBilinearCZFagerstrom_g2c "g2c"
49 #define _IFT_IntMatBilinearCZFagerstrom_mu "mu"
50 #define _IFT_IntMatBilinearCZFagerstrom_gamma "gamma"
51 #define _IFT_IntMatBilinearCZFagerstrom_sigf "sigf"
52 
53 
54 namespace oofem {
59 {
60 protected:
61 
62  // material jump
64  // temporary material jump
66 
67  // damage variable
68  double damage;
69  // temporary damage value
70  double tempDamage;
71 
72  // Effective Mandel traction
74  // Temporary effective Mandel traction
76 
77  // Temporary inverse of deformation gradient
79 
80  // Temporary array for coordinate transformation
82 
83  // tempArrays for stiffness calculation
86 
87  // indicator for davae development of preceding time step
90 
91  // tangent stiffness from previous time step
94 
95 
96 
97 
98 
99 
100 public:
105 
106  virtual void printOutputAt(FILE *file, TimeStep *tStep);
107 
108  // definition
109  virtual const char *giveClassName() const { return "IntMatBilinearCZFagerstromStatus"; }
110 
111  double giveDamage() { return damage; }
112  double giveTempDamage() { return tempDamage; }
113  bool giveOldDamageDev() { return oldDamageDev; }
114 
117 
120 
123  const FloatMatrix &giveTempIep() { return Iep; }
124  const FloatArray &giveTempAlphav() { return alphav; }
125  const FloatMatrix &giveOlddTdJ() {return old_dTdJ; }
126 
127 
128  void letTempDamageBe(double v) { tempDamage = v; }
129  void letTempDamageDevBe(bool v) { tempDamageDev = v; }
130  void letOldDamageDevBe(bool v) { oldDamageDev = v; }
131  void letTempEffectiveMandelTractionBe(FloatArray v) { tempQEffective = std :: move(v); }
132  void letTempMaterialJumpBe(FloatArray v) { tempMaterialJump = std :: move(v); }
133 
134  void letTempdTdJBe(FloatMatrix &v) { temp_dTdJ = v; }
135 
136  void letTempInverseDefGradBe(FloatMatrix v) { tempFInv = std :: move(v); }
137  void letTempRotationMatrix(FloatMatrix v) { tempRot = std :: move(v); }
138  void letTempIepBe(FloatMatrix v) { Iep = std :: move(v); }
139  void letTempAlphavBe(FloatArray v) { alphav = std :: move(v); }
140 
141 
142 
143  virtual void initTempStatus();
144  virtual void updateYourself(TimeStep *tStep);
145 
146  //virtual contextIOResultType saveContext(DataStream &stream, ContextMode mode, void *obj = NULL);
147  //virtual contextIOResultType restoreContext(DataStream &stream, ContextMode mode, void *obj = NULL);
148 };
149 
150 
164 {
165 protected:
167  double kn0; // initial normal stiffness
168  double ks0; // initial shear stiffness
169  double knc; // stiffness in compression
170  double GIc; // fracture energy, mode 1
171  double GIIc; // fracture energy, mode 1
172  double sigf; // max stress
173 
174  double mu; // loading function parameter
175  double gamma; // loading function parameter
176 
177 
178  virtual int checkConsistency();
179  void give3dInterfaceMaterialStiffnessMatrix(FloatMatrix &answer, MatResponseMode rMode,
180  GaussPoint *gp, TimeStep *tStep);
181 
182 public:
186  virtual ~IntMatBilinearCZFagerstrom();
187 
188  virtual int hasNonLinearBehaviour() { return 1; }
189 
190  virtual const char *giveClassName() const { return "IntMatBilinearCZFagerstrom"; }
191  virtual const char *giveInputRecordName() const { return _IFT_IntMatBilinearCZFagerstrom_Name; }
192 
193 
194  virtual void giveFirstPKTraction_3d(FloatArray &answer, GaussPoint *gp, const FloatArray &jump,
195  const FloatMatrix &F, TimeStep *tStep);
196  virtual void give3dStiffnessMatrix_dTdj(FloatMatrix &answer, MatResponseMode rMode, GaussPoint *gp, TimeStep *tStep);
197 
202  virtual bool hasAnalyticalTangentStiffness() const { return true; }
203 
204 
205  virtual int giveIPValue(FloatArray &answer, GaussPoint *gp, InternalStateType type, TimeStep *tStep);
207  virtual void giveInputRecord(DynamicInputRecord &input);
208 
209  virtual FloatArray giveInterfaceStrength() { return {this->sigf*this->gamma,this->sigf*this->gamma,this->sigf}; }
210 
211  virtual MaterialStatus *CreateStatus(GaussPoint *gp) const { return new IntMatBilinearCZFagerstromStatus(1, domain, gp); } //@Martin: Why new?
212  void printYourself();
213 protected:
214 };
215 } // end namespace oofem
216 #endif // isointerfacedamage01_h
InternalStateType
Type representing the physical meaning of element or constitutive model internal variable.
GaussPoint * gp
Associated integration point.
Class and object Domain.
Definition: domain.h:115
Domain * domain
Link to domain object, useful for communicating with other FEM components.
Definition: femcmpnn.h:82
virtual bool hasAnalyticalTangentStiffness() const
Tells if the model has implemented analytical tangent stiffness.
virtual void updateYourself(TimeStep *tStep)
Update equilibrium history variables according to temp-variables.
virtual MaterialStatus * CreateStatus(GaussPoint *gp) const
Creates new copy of associated status and inserts it into given integration point.
virtual void giveInputRecord(DynamicInputRecord &input)
Setups the input record string of receiver.
Definition: femcmpnn.C:77
MatResponseMode
Describes the character of characteristic material matrix.
virtual void printYourself()
Prints receiver state on stdout. Useful for debugging.
Definition: femcmpnn.h:173
virtual IRResultType initializeFrom(InputRecord *ir)
Initializes receiver according to object description stored in input record.
Definition: matstatus.h:140
virtual int checkConsistency()
Allows programmer to test some internal data, before computation begins.
Definition: femcmpnn.C:94
FloatMatrix F
Equilibrated deformation gradient in reduced form.
This class implements a structural interface material status information.
IntMatBilinearCZFagerstromStatus(int n, Domain *d, GaussPoint *g)
Constructor.
FloatArray jump
Equilibrated jump (discontinuity)
Abstract base class representing a material status information.
Definition: matstatus.h:84
Class representing vector of real numbers.
Definition: floatarray.h:82
Implementation of matrix containing floating point numbers.
Definition: floatmatrix.h:94
IRResultType
Type defining the return values of InputRecord reading operations.
Definition: irresulttype.h:47
virtual const char * giveClassName() const
Class representing the general Input Record.
Definition: inputrecord.h:101
virtual const char * giveInputRecordName() const
virtual int hasNonLinearBehaviour()
Returns nonzero if receiver is non linear.
Class representing the a dynamic Input Record.
Simple isotropic damage based model for 2d interface elements.
virtual void printOutputAt(FILE *file, TimeStep *tStep)
Print receiver's output to given stream.
Abstract base class for all "structural" interface models.
the oofem namespace is to define a context or scope in which all oofem names are defined.
This class implements associated Material Status for IntMatBilinearCZFagerstrom.
Class representing integration point in finite element program.
Definition: gausspoint.h:93
Class representing solution step.
Definition: timestep.h:80
virtual void initTempStatus()
Initializes the temporary internal variables, describing the current state according to previously re...
#define _IFT_IntMatBilinearCZFagerstrom_Name

This page is part of the OOFEM documentation. Copyright (c) 2011 Borek Patzak
Project e-mail: info@oofem.org
Generated at Tue Jan 2 2018 20:07:29 for OOFEM by doxygen 1.8.11 written by Dimitri van Heesch, © 1997-2011