OOFEM  2.4
OOFEM.org - Object Oriented Finite Element Solver
feinterpol3d.h
Go to the documentation of this file.
1 /*
2  *
3  * ##### ##### ###### ###### ### ###
4  * ## ## ## ## ## ## ## ### ##
5  * ## ## ## ## #### #### ## # ##
6  * ## ## ## ## ## ## ## ##
7  * ## ## ## ## ## ## ## ##
8  * ##### ##### ## ###### ## ##
9  *
10  *
11  * OOFEM : Object Oriented Finite Element Code
12  *
13  * Copyright (C) 1993 - 2013 Borek Patzak
14  *
15  *
16  *
17  * Czech Technical University, Faculty of Civil Engineering,
18  * Department of Structural Mechanics, 166 29 Prague, Czech Republic
19  *
20  * This library is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU Lesser General Public
22  * License as published by the Free Software Foundation; either
23  * version 2.1 of the License, or (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28  * Lesser General Public License for more details.
29  *
30  * You should have received a copy of the GNU Lesser General Public
31  * License along with this library; if not, write to the Free Software
32  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
33  */
34 
35 #ifndef feinterpol3d_h
36 #define feinterpol3d_h
37 
38 #include "feinterpol.h"
39 
40 namespace oofem {
44 class OOFEM_EXPORT FEInterpolation3d : public FEInterpolation
45 {
46 public:
48  virtual int giveNsd() { return 3; }
49 
55  virtual double giveVolume(const FEICellGeometry &cellgeo) const;
56 
57  virtual void boundaryEdgeGiveNodes(IntArray &answer, int boundary);
58  virtual void boundaryEdgeEvalN(FloatArray &answer, int boundary, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
59  virtual double boundaryEdgeGiveTransformationJacobian(int boundary, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
60  virtual void boundaryEdgeLocal2Global(FloatArray &answer, int boundary, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
61 
62 
63  virtual void boundarySurfaceEvalN(FloatArray &answer, int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo) {this->surfaceEvalN(answer, isurf, lcoords, cellgeo);}
64  virtual void boundarySurfaceEvaldNdx(FloatMatrix &answer, int isurf,
65  const FloatArray &lcoords, const FEICellGeometry &cellgeo)
66  {this->surfaceEvaldNdx(answer, isurf, lcoords, cellgeo);}
67  virtual double boundarySurfaceEvalNormal(FloatArray &answer, int isurf, const FloatArray &lcoords,
68  const FEICellGeometry &cellgeo)
69  {return surfaceEvalNormal(answer, isurf, lcoords, cellgeo);}
70  virtual void boundarySurfaceLocal2global(FloatArray &answer, int isurf,
71  const FloatArray &lcoords, const FEICellGeometry &cellgeo)
72  {this->surfaceLocal2global(answer, isurf, lcoords, cellgeo);}
73  virtual double boundarySurfaceGiveTransformationJacobian(int isurf, const FloatArray &lcoords,
74  const FEICellGeometry &cellgeo)
75  {return this->surfaceGiveTransformationJacobian(isurf, lcoords, cellgeo);}
76 
77 
78  virtual void boundaryGiveNodes(IntArray &answer, int boundary);
79  virtual void boundaryEvalN(FloatArray &answer, int boundary, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
80  virtual double boundaryEvalNormal(FloatArray &answer, int boundary, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
81  virtual double boundaryGiveTransformationJacobian(int boundary, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
82  virtual void boundaryLocal2Global(FloatArray &answer, int boundary, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
83 
93  virtual void edgeEvalN(FloatArray &answer, int iedge, const FloatArray &lcoords, const FEICellGeometry &cellgeo) = 0;
102  virtual void edgeEvaldNdx(FloatMatrix &answer, int iedge,
103  const FloatArray &lcoords, const FEICellGeometry &cellgeo) = 0;
112  virtual void edgeEvaldNdxi(FloatArray &answer, int iedge,
113  const FloatArray &lcoords, const FEICellGeometry &cellgeo);
122  virtual void edgeLocal2global(FloatArray &answer, int iedge,
123  const FloatArray &lcoords, const FEICellGeometry &cellgeo) = 0;
131  virtual double edgeGiveTransformationJacobian(int iedge,
132  const FloatArray &lcoords,
133  const FEICellGeometry &cellgeo) = 0;
134 
135  virtual void computeLocalEdgeMapping(IntArray &edgeNodes, int iedge) = 0;
136  void computeEdgeMapping(IntArray &edgeNodes, IntArray &elemNodes, int iedge);
138 
148  virtual void surfaceEvalN(FloatArray &answer, int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo) = 0;
157  virtual void surfaceEvaldNdx(FloatMatrix &answer, int isurf,
158  const FloatArray &lcoords, const FEICellGeometry &cellgeo);
167  virtual double surfaceEvalNormal(FloatArray &answer, int isurf, const FloatArray &lcoords,
168  const FEICellGeometry &cellgeo);
169 
178  virtual void surfaceLocal2global(FloatArray &answer, int isurf,
179  const FloatArray &lcoords, const FEICellGeometry &cellgeo) = 0;
187  virtual double surfaceGiveTransformationJacobian(int isurf, const FloatArray &lcoords,
188  const FEICellGeometry &cellgeo) = 0;
189 
190  virtual void computeLocalSurfaceMapping(IntArray &surfNodes, int isurf) = 0;
191  void computeSurfaceMapping(IntArray &surfNodes, IntArray &elemNodes, int isurf);
193 
194  virtual IntegrationRule *giveBoundaryEdgeIntegrationRule(int order, int boundary);
195  virtual IntegrationRule *giveBoundaryIntegrationRule(int order, int boundary)
196  {
197  OOFEM_ERROR("Not overloaded");
198  return NULL;
199  };
200  virtual void boundarySurfaceGiveNodes(IntArray &answer, int boundary);
201 };
202 } // end namespace oofem
203 #endif // feinterpol3d_h
Class representing a general abstraction for cell geometry.
Definition: feinterpol.h:62
virtual void boundarySurfaceLocal2global(FloatArray &answer, int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo)
Evaluates edge global coordinates from given local ones.
Definition: feinterpol3d.h:70
Class implementing an array of integers.
Definition: intarray.h:61
Abstract base class representing integration rule.
virtual IntegrationRule * giveBoundaryIntegrationRule(int order, int boundary)
Sets up a suitable integration rule for integrating over the requested boundary.
Definition: feinterpol3d.h:195
Class representing a general abstraction for finite element interpolation class.
Definition: feinterpol.h:132
virtual double boundarySurfaceEvalNormal(FloatArray &answer, int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo)
Evaluates the normal out of the surface at given point.
Definition: feinterpol3d.h:67
virtual void boundarySurfaceEvalN(FloatArray &answer, int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo)
Evaluates the array of edge interpolation functions (shape functions) at given point.
Definition: feinterpol3d.h:63
virtual int giveNsd()
Returns number of spatial dimensions.
Definition: feinterpol3d.h:48
#define OOFEM_ERROR(...)
Definition: error.h:61
virtual void boundarySurfaceEvaldNdx(FloatMatrix &answer, int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo)
Evaluates the matrix of derivatives of edge interpolation functions (shape functions) at given point...
Definition: feinterpol3d.h:64
Class representing vector of real numbers.
Definition: floatarray.h:82
Implementation of matrix containing floating point numbers.
Definition: floatmatrix.h:94
virtual double boundarySurfaceGiveTransformationJacobian(int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo)
Evaluates the edge jacobian of transformation between local and global coordinates.
Definition: feinterpol3d.h:73
Class representing a general abstraction for surface finite element interpolation class...
Definition: feinterpol3d.h:44
the oofem namespace is to define a context or scope in which all oofem names are defined.

This page is part of the OOFEM documentation. Copyright (c) 2011 Borek Patzak
Project e-mail: info@oofem.org
Generated at Tue Jan 2 2018 20:07:28 for OOFEM by doxygen 1.8.11 written by Dimitri van Heesch, © 1997-2011