OOFEM  2.4
OOFEM.org - Object Oriented Finite Element Solver
fei1dhermite.h
Go to the documentation of this file.
1 /*
2  *
3  * ##### ##### ###### ###### ### ###
4  * ## ## ## ## ## ## ## ### ##
5  * ## ## ## ## #### #### ## # ##
6  * ## ## ## ## ## ## ## ##
7  * ## ## ## ## ## ## ## ##
8  * ##### ##### ## ###### ## ##
9  *
10  *
11  * OOFEM : Object Oriented Finite Element Code
12  *
13  * Copyright (C) 1993 - 2013 Borek Patzak
14  *
15  *
16  *
17  * Czech Technical University, Faculty of Civil Engineering,
18  * Department of Structural Mechanics, 166 29 Prague, Czech Republic
19  *
20  * This library is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU Lesser General Public
22  * License as published by the Free Software Foundation; either
23  * version 2.1 of the License, or (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28  * Lesser General Public License for more details.
29  *
30  * You should have received a copy of the GNU Lesser General Public
31  * License along with this library; if not, write to the Free Software
32  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
33  */
34 
35 #ifndef fei1dquad_h
36 #define fei1dquad_h
37 
38 #include "feinterpol1d.h"
39 
40 namespace oofem {
45 class OOFEM_EXPORT FEI1dHermite : public FEInterpolation1d
46 {
47 protected:
48  int cindx;
49 
50 public:
51  FEI1dHermite(int coordIndx) : FEInterpolation1d(2) {
52  cindx = coordIndx;
53  }
54 
55  virtual integrationDomain giveIntegrationDomain() const { return _Line; }
56  virtual Element_Geometry_Type giveGeometryType() const { return EGT_line_1; }
57 
58  virtual double giveLength(const FEICellGeometry &cellgeo) const;
59 
60  virtual void evalN(FloatArray &answer, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
61  virtual double evaldNdx(FloatMatrix &answer, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
62  virtual void evald2Ndx2(FloatMatrix &answer, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
63  virtual void local2global(FloatArray &answer, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
64  virtual int global2local(FloatArray &answer, const FloatArray &lcoords, const FEICellGeometry &cellgeo);
65  virtual double giveTransformationJacobian(const FloatArray &lcoords, const FEICellGeometry &cellgeo);
66 
67  virtual int giveNumberOfNodes() const { return 2; }
68 };
69 } // end namespace oofem
70 #endif
integrationDomain
Used by integrator class to supply integration points for proper domain to be integrated (Area...
Element_Geometry_Type
Enumerative type used to classify element geometry Possible values are: EGT_point - point in space EG...
Class representing a general abstraction for cell geometry.
Definition: feinterpol.h:62
virtual integrationDomain giveIntegrationDomain() const
Returns the integration domain of the interpolator.
Definition: fei1dhermite.h:55
Class representing a general abstraction for finite element interpolation class.
Definition: feinterpol1d.h:44
Class representing a 1d Hermitian cubic isoparametric interpolation.
Definition: fei1dhermite.h:45
virtual Element_Geometry_Type giveGeometryType() const
Returns the geometry type fo the interpolator.
Definition: fei1dhermite.h:56
FEI1dHermite(int coordIndx)
Definition: fei1dhermite.h:51
virtual int giveNumberOfNodes() const
Returns the number of geometric nodes of the receiver.
Definition: fei1dhermite.h:67
Class representing vector of real numbers.
Definition: floatarray.h:82
Implementation of matrix containing floating point numbers.
Definition: floatmatrix.h:94
the oofem namespace is to define a context or scope in which all oofem names are defined.

This page is part of the OOFEM documentation. Copyright (c) 2011 Borek Patzak
Project e-mail: info@oofem.org
Generated at Tue Jan 2 2018 20:07:28 for OOFEM by doxygen 1.8.11 written by Dimitri van Heesch, © 1997-2011