OOFEM  2.4
OOFEM.org - Object Oriented Finite Element Solver
cohsur3d.C
Go to the documentation of this file.
1 /*
2  *
3  * ##### ##### ###### ###### ### ###
4  * ## ## ## ## ## ## ## ### ##
5  * ## ## ## ## #### #### ## # ##
6  * ## ## ## ## ## ## ## ##
7  * ## ## ## ## ## ## ## ##
8  * ##### ##### ## ###### ## ##
9  *
10  *
11  * OOFEM : Object Oriented Finite Element Code
12  *
13  * Copyright (C) 1993 - 2013 Borek Patzak
14  *
15  *
16  *
17  * Czech Technical University, Faculty of Civil Engineering,
18  * Department of Structural Mechanics, 166 29 Prague, Czech Republic
19  *
20  * This library is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU Lesser General Public
22  * License as published by the Free Software Foundation; either
23  * version 2.1 of the License, or (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28  * Lesser General Public License for more details.
29  *
30  * You should have received a copy of the GNU Lesser General Public
31  * License along with this library; if not, write to the Free Software
32  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
33  */
34 
35 #include "../sm/Elements/Interfaces/cohsur3d.h"
36 #include "dof.h"
37 #include "node.h"
38 #include "particle.h"
39 #include "gaussintegrationrule.h"
40 #include "floatmatrix.h"
41 #include "intarray.h"
42 #include "floatarray.h"
43 #include "mathfem.h"
44 #include "../sm/CrossSections/structuralinterfacecrosssection.h"
45 #include "classfactory.h"
46 
47 #ifdef __OOFEG
48  #include "oofeggraphiccontext.h"
49  #include "connectivitytable.h"
50  #include "oofegutils.h"
51 #endif
52 
53 namespace oofem {
54 REGISTER_Element(CohesiveSurface3d);
55 
57  // Constructor.
58 {
59  numberOfDofMans = -1;
60  area = -1.;
61  length = -1.;
62  kx = ky = kz = 0;
63  kxa = kyb = kzc = 0;
64 }
65 
66 void
68 // Returns the strain-displacement matrix of the receiver.
69 {
70  double x01, y01, z01, x02, y02, z02;
71  FloatMatrix Bloc(3, 12);
72 
73  Node *nodeA, *nodeB;
74  nodeA = this->giveNode(1);
75  nodeB = this->giveNode(2);
76 
77  switch ( numberOfDofMans ) {
78  case 2:
79  // Coordinate differences
80  x01 = nodeA->giveCoordinate(1) - center.at(1);
81  y01 = nodeA->giveCoordinate(2) - center.at(2);
82  z01 = nodeA->giveCoordinate(3) - center.at(3);
83  x02 = nodeB->giveCoordinate(1) - center.at(1);
84  y02 = nodeB->giveCoordinate(2) - center.at(2);
85  z02 = nodeB->giveCoordinate(3) - center.at(3);
86 
87  // B matrix in local coordinates (and without the term 1/length)
88 
89  Bloc.zero();
90 
91  Bloc.at(1, 1) = -1.;
92  Bloc.at(2, 2) = -1.;
93  Bloc.at(3, 3) = -1.;
94 
95  Bloc.at(1, 5) = z01;
96  Bloc.at(1, 6) = -y01;
97  Bloc.at(2, 4) = -z01;
98  Bloc.at(2, 6) = x01;
99  Bloc.at(3, 4) = y01;
100  Bloc.at(3, 5) = -x01;
101 
102  Bloc.at(1, 7) = 1.;
103  Bloc.at(2, 8) = 1.;
104  Bloc.at(3, 9) = 1.;
105 
106  Bloc.at(1, 11) = -z02;
107  Bloc.at(1, 12) = y02;
108  Bloc.at(2, 10) = z02;
109  Bloc.at(2, 12) = -x02;
110  Bloc.at(3, 10) = -y02;
111  Bloc.at(3, 11) = x02;
112 
113  // Transformation to global coordinates
114 
115  answer.resize(3, 12);
116  answer.beProductOf(lcs, Bloc);
117 
118  // Division by the length
119 
120  answer.times(1. / length);
121 
122  return;
123 
124  break;
125 
126  case 3:
127  // Coordinate differences
128  x01 = nodeA->giveCoordinate(1) - center.at(1);
129  y01 = nodeA->giveCoordinate(2) - center.at(2);
130  z01 = nodeA->giveCoordinate(3) - center.at(3);
131  x02 = nodeB->giveCoordinate(1) + kxa - center.at(1);
132  y02 = nodeB->giveCoordinate(2) + kyb - center.at(2);
133  z02 = nodeB->giveCoordinate(3) + kzc - center.at(3);
134 
135  // B matrix in local coordinates (and without the term 1/length)
136 
137  Bloc.zero();
138 
139  Bloc.at(1, 1) = -1.;
140  Bloc.at(2, 2) = -1.;
141  Bloc.at(3, 3) = -1.;
142 
143  Bloc.at(1, 5) = z01;
144  Bloc.at(1, 6) = -y01;
145  Bloc.at(2, 4) = -z01;
146  Bloc.at(2, 6) = x01;
147  Bloc.at(3, 4) = y01;
148  Bloc.at(3, 5) = -x01;
149 
150  Bloc.at(1, 7) = 1.;
151  Bloc.at(2, 8) = 1.;
152  Bloc.at(3, 9) = 1.;
153 
154  Bloc.at(1, 11) = -z02;
155  Bloc.at(1, 12) = y02;
156  Bloc.at(2, 10) = z02;
157  Bloc.at(2, 12) = -x02;
158  Bloc.at(3, 10) = -y02;
159  Bloc.at(3, 11) = x02;
160 
161  // Transformation to global coordinates
162 
163  FloatMatrix answer2(3, 12);
164  answer2.zero();
165  answer2.beProductOf(lcs, Bloc);
166 
167  // Division by the length
168 
169  answer2.times(1. / length);
170 
171  // periodic transformation matrix T
172  FloatMatrix Tper(12, 18);
173 
174  Tper.zero();
175 
176  Tper.at(1, 1) = 1.;
177  Tper.at(2, 2) = 1.;
178  Tper.at(3, 3) = 1.;
179  Tper.at(4, 4) = 1.;
180  Tper.at(5, 5) = 1.;
181  Tper.at(6, 6) = 1.;
182  Tper.at(7, 7) = 1.;
183  Tper.at(8, 8) = 1.;
184  Tper.at(9, 9) = 1.;
185  Tper.at(10, 10) = 1.;
186  Tper.at(11, 11) = 1.;
187  Tper.at(12, 12) = 1.;
188 
189  Tper.at(7, 13) = kxa;
190  Tper.at(8, 14) = kyb;
191  Tper.at(9, 15) = kzc;
192  Tper.at(7, 16) = kyb;
193  Tper.at(8, 17) = kzc;
194  Tper.at(9, 18) = kxa;
195 
196  // periodic transformation of Bmatrix
197  answer.beProductOf(answer2, Tper);
198 
199  return;
200 
201  break;
202  }
203 }
204 
206 // Sets up the array of Gauss points of the receiver.
207 {
208  // The Gauss point is used only when methods from crosssection and/or material
209  // classes are requested.
210  integrationRulesArray.resize( 1 );
211  integrationRulesArray [ 0 ].reset( new GaussIntegrationRule(1, this) );
213 }
214 
215 
216 double
218 {
219  return area * length;
220 }
221 
222 
223 void
225 {
226  answer = {D_u, D_v, D_w, R_u, R_v, R_w};
227 }
228 
229 
230 void
232 {
233  static_cast< StructuralInterfaceCrossSection* >(this->giveCrossSection())->giveEngTraction_3d(answer, gp, strain, tStep);
234 }
235 
236 
237 void
239 {
240  static_cast< StructuralInterfaceCrossSection* >(this->giveCrossSection())->give3dStiffnessMatrix_Eng(answer, rMode, gp, tStep);
241 }
242 
243 
244 double
246 // Returns the length of the receiver.
247 {
248  double dx, dy, dz;
249  Node *nodeA, *nodeB;
250  nodeA = this->giveNode(1);
251  nodeB = this->giveNode(2);
252 
253  switch ( numberOfDofMans ) {
254  case 2:
255  if ( length <= 0. ) {
256  dx = nodeB->giveCoordinate(1) - nodeA->giveCoordinate(1);
257  dy = nodeB->giveCoordinate(2) - nodeA->giveCoordinate(2);
258  dz = nodeB->giveCoordinate(3) - nodeA->giveCoordinate(3);
259  length = sqrt(dx * dx + dy * dy + dz * dz);
260  }
261 
262  return length;
263 
264  break;
265 
266  case 3:
267  if ( length <= 0. ) {
268  dx = nodeB->giveCoordinate(1) + kxa - nodeA->giveCoordinate(1);
269  dy = nodeB->giveCoordinate(2) + kyb - nodeA->giveCoordinate(2);
270  dz = nodeB->giveCoordinate(3) + kzc - nodeA->giveCoordinate(3);
271  length = sqrt(dx * dx + dy * dy + dz * dz);
272  }
273 
274  return length;
275 
276  break;
277  }
278 
279  return 0.;
280 }
281 
282 void
284 {
285  Particle *nodeA, *nodeB;
286  double RA, RB, L, aux;
287 
288  nodeA = static_cast< Particle * >( this->giveNode(1) );
289  nodeB = static_cast< Particle * >( this->giveNode(2) );
290  RA = nodeA->giveRadius();
291  RB = nodeB->giveRadius();
292  L = giveLength();
293  aux = 0.5 + ( RA - RB ) / ( 2. * L );
294 
295  switch ( numberOfDofMans ) {
296  case 2:
297  center.resize(3);
298  for ( int i = 1; i <= 3; i++ ) {
299  center.at(i) = aux * ( nodeB->giveCoordinate(i) ) + ( 1. - aux ) * ( nodeA->giveCoordinate(i) );
300  }
301 
302  break;
303 
304  case 3:
305  center.resize(3);
306  center.at(1) = aux * ( nodeB->giveCoordinate(1) + kxa ) + ( 1. - aux ) * ( nodeA->giveCoordinate(1) );
307  center.at(2) = aux * ( nodeB->giveCoordinate(2) + kyb ) + ( 1. - aux ) * ( nodeA->giveCoordinate(2) );
308  center.at(3) = aux * ( nodeB->giveCoordinate(3) + kzc ) + ( 1. - aux ) * ( nodeA->giveCoordinate(3) );
309 
310  break;
311  }
312 }
313 
314 void
316 //
317 // Computes unit vectors of local coordinate system, stored by rows.
318 //
319 {
320  FloatArray lx(3), ly(3), lz(3);
321 
322  Node *nodeA, *nodeB;
323  nodeA = this->giveNode(1);
324  nodeB = this->giveNode(2);
325 
326  switch ( numberOfDofMans ) {
327  case 2:
328  lx.at(1) = nodeB->giveCoordinate(1) - nodeA->giveCoordinate(1);
329  lx.at(2) = nodeB->giveCoordinate(2) - nodeA->giveCoordinate(2);
330  lx.at(3) = nodeB->giveCoordinate(3) - nodeA->giveCoordinate(3);
331  lx.normalize();
332  break;
333 
334  case 3:
335  lx.at(1) = nodeB->giveCoordinate(1) + kxa - nodeA->giveCoordinate(1);
336  lx.at(2) = nodeB->giveCoordinate(2) + kyb - nodeA->giveCoordinate(2);
337  lx.at(3) = nodeB->giveCoordinate(3) + kzc - nodeA->giveCoordinate(3);
338  lx.normalize();
339  break;
340  }
341 
342  ly.zero();
343  if ( fabs( lx.at(1) ) > fabs( lx.at(2) ) ) {
344  ly.at(2) = 1.;
345  } else {
346  ly.at(1) = 1.;
347  }
348 
349  lz.beVectorProductOf(lx, ly);
350  lz.normalize();
351  ly.beVectorProductOf(lz, lx);
352  ly.normalize();
353 
354  lcs.resize(3, 3);
355  for ( int i = 1; i <= 3; i++ ) {
356  lcs.at(1, i) = lx.at(i);
357  lcs.at(2, i) = ly.at(i);
358  lcs.at(3, i) = lz.at(i);
359  }
360 }
361 
362 
365 {
366  IRResultType result;
367 
368  // first call parent
370  if ( result != IRRT_OK ) {
371  return result;
372  }
373 
374  // read the area from the input file
376  if ( area < 0. ) {
377  OOFEM_WARNING("negative area specified");
378  return IRRT_BAD_FORMAT;
379  }
380 
381  // read shift constants of second (periodic) particle form the input file (if defined)
386 
387  // evaluate number of Dof Managers
389  if ( numberOfDofMans <= 0 ) {
390  OOFEM_WARNING("unread nodes: Element %d", this->giveNumber() );
391  return IRRT_BAD_FORMAT;
392  }
393 
394  if ( ( numberOfDofMans == 3 ) & ( kx == 0 ) & ( ky == 0 ) & ( kz == 0 ) ) {
395  OOFEM_WARNING("no periodic shift defined: Element %d", this->giveNumber() );
396  return IRRT_BAD_FORMAT;
397  }
398 
399 
400  // shifts of periodic particles
401  if ( numberOfDofMans == 3 ) {
402  Node *nodeC;
403  nodeC = this->giveNode(3);
404  kxa = this->kx * nodeC->giveCoordinate(1);
405  kyb = this->ky * nodeC->giveCoordinate(2);
406  kzc = this->kz * nodeC->giveCoordinate(3);
407  }
408 
409  // evaluate the length
410  giveLength();
411  if ( length <= 0. ) {
412  OOFEM_WARNING("negative length evaluated: Element %d", this->giveNumber() );
413  return IRRT_BAD_FORMAT;
414  // evaluate the coordinates of the center
415  evaluateCenter();
416  }
417 
418  // evaluate the local coordinate system
420 
421  return IRRT_OK;
422 }
423 
424 
425 int
427 {
428  answer = center;
429  return 1;
430 }
431 
432 
433 #ifdef __OOFEG
435 {
436  if ( !gc.testElementGraphicActivity(this) ) {
437  return;
438  }
439 
440  //WCRec p[4];
441  GraphicObj *go;
442 
443  Particle *nodeA = ( Particle * ) this->giveNode(1);
444  Particle *nodeB = ( Particle * ) this->giveNode(2);
445  //double rA = nodeA -> giveRadius();
446  //double rB = nodeB -> giveRadius();
447  //double r = (rA+rB)/4.;
448 
449  EASValsSetLineWidth(OOFEG_RAW_GEOMETRY_WIDTH);
450  EASValsSetColor( gc.getElementColor() );
451  EASValsSetEdgeColor( gc.getElementEdgeColor() );
452  EASValsSetEdgeFlag(true);
453  EASValsSetLayer(OOFEG_RAW_GEOMETRY_LAYER);
454 
455  WCRec pl [ 2 ];
456  // determine coordinates of the particles connected by this element
457  pl [ 0 ].x = ( FPNum ) nodeA->giveCoordinate(1);
458  pl [ 0 ].y = ( FPNum ) nodeA->giveCoordinate(2);
459  pl [ 0 ].z = ( FPNum ) nodeA->giveCoordinate(3);
460  pl [ 1 ].x = ( FPNum ) nodeB->giveCoordinate(1);
461  pl [ 1 ].y = ( FPNum ) nodeB->giveCoordinate(2);
462  pl [ 1 ].z = ( FPNum ) nodeB->giveCoordinate(3);
463  if ( giveNumberOfNodes() == 3 ) {
464  // the second particle should be shifted (periodic arrangement)
465  Particle *nodeC = ( Particle * ) this->giveNode(3);
466  pl [ 1 ].x += kx * ( nodeC->giveCoordinate(1) );
467  pl [ 1 ].y += ky * ( nodeC->giveCoordinate(2) );
468  pl [ 1 ].z += kz * ( nodeC->giveCoordinate(3) );
469  }
470 
471  // plot a line segment connecting the particles
472  go = CreateLine3D(pl);
473  EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, go);
474  EGAttachObject(go, ( EObjectP ) this);
475  EMAddGraphicsToModel(ESIModel(), go);
476 }
477 
479 {
480  GraphicObj *go1, *go2;
481 
482  if ( !gc.testElementGraphicActivity(this) ) {
483  return;
484  }
485 
486  double defScale = gc.getDefScale();
487  WCRec p [ 2 ];
488  EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH);
489  EASValsSetColor( gc.getDeformedElementColor() );
490  EASValsSetLayer(OOFEG_DEFORMED_GEOMETRY_LAYER);
491 
492  // get the displaced particle coordinates
493  Particle *nodeA = ( Particle * ) giveNode(1);
494  Particle *nodeB = ( Particle * ) giveNode(2);
495  p [ 0 ].x = nodeA->giveUpdatedCoordinate(1, tStep, defScale);
496  p [ 0 ].y = nodeA->giveUpdatedCoordinate(2, tStep, defScale);
497  p [ 0 ].z = nodeA->giveUpdatedCoordinate(3, tStep, defScale);
498 
499  p [ 1 ].x = nodeB->giveUpdatedCoordinate(1, tStep, defScale);
500  p [ 1 ].y = nodeB->giveUpdatedCoordinate(2, tStep, defScale);
501  p [ 1 ].z = nodeB->giveUpdatedCoordinate(3, tStep, defScale);
502 
503  // plot the displaced particles
504  EASValsSetMType(FILLED_CIRCLE_MARKER);
505  EASValsSetColor( gc.getNodeColor() );
506  EASValsSetMSize(6);
507 
508  // plot the first particle
509  go1 = CreateMarker3D(p);
510  EGWithMaskChangeAttributes(COLOR_MASK | LAYER_MASK | MTYPE_MASK | MSIZE_MASK, go1);
511  EMAddGraphicsToModel(ESIModel(), go1);
512 
513  // take into account periodic conditions
514  if ( giveNumberOfNodes() == 3 ) {
515  Node *nodeC = ( Particle * ) giveNode(3);
516  p [ 1 ].x += kxa + kxa * defScale * ( nodeC->giveDofWithID(D_u)->giveUnknown(VM_Total, tStep) ) + kyb * defScale * ( nodeC->giveDofWithID(R_u)->giveUnknown(VM_Total, tStep) );
517  p [ 1 ].y += kyb + kyb * defScale * ( nodeC->giveDofWithID(D_v)->giveUnknown(VM_Total, tStep) ) + kzc * defScale * ( nodeC->giveDofWithID(R_v)->giveUnknown(VM_Total, tStep) );
518  p [ 1 ].z += kzc + kzc * defScale * ( nodeC->giveDofWithID(D_w)->giveUnknown(VM_Total, tStep) ) + kxa * defScale * ( nodeC->giveDofWithID(R_w)->giveUnknown(VM_Total, tStep) );
519  EASValsSetMType(CIRCLE_MARKER);
520  }
521 
522  // plot the second particle
523  go2 = CreateMarker3D(p + 1);
524  EGWithMaskChangeAttributes(COLOR_MASK | LAYER_MASK | MTYPE_MASK | MSIZE_MASK, go2);
525  EMAddGraphicsToModel(ESIModel(), go2);
526 }
527 
528 
529 void
531 {
532  if ( !gc.testElementGraphicActivity(this) ) {
533  return;
534  }
535 
536  FloatArray val;
537  GaussPoint *gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0);
538  if ( !giveIPValue(val, gp, gc.giveIntVarType(), tStep) ) {
539  return;
540  }
541 
542  int indx = gc.giveIntVarIndx();
543 
544  double s [ 8 ];
545  for ( int i = 0; i < 8; i++ ) {
546  s [ i ] = val.at(indx);
547  }
548 
549  gc.updateFringeTableMinMax(s, 1);
550 
551  WCRec p [ 8 ];
552  Particle *nodeA = ( Particle * ) giveNode(1);
553  Particle *nodeB = ( Particle * ) giveNode(2);
554  if ( gc.getInternalVarsDefGeoFlag() ) {
555  // use deformed geometry
556  double defScale = gc.getDefScale();
557  p [ 0 ].x = nodeA->giveUpdatedCoordinate(1, tStep, defScale);
558  p [ 0 ].y = nodeA->giveUpdatedCoordinate(2, tStep, defScale);
559  p [ 0 ].z = nodeA->giveUpdatedCoordinate(3, tStep, defScale);
560  p [ 2 ].x = nodeB->giveUpdatedCoordinate(1, tStep, defScale);
561  p [ 2 ].y = nodeB->giveUpdatedCoordinate(2, tStep, defScale);
562  p [ 2 ].z = nodeB->giveUpdatedCoordinate(3, tStep, defScale);
563  // handle special elements crossing the boundary of the periodic cell
564  if ( giveNumberOfNodes() == 3 ) {
565  Node *nodeC = ( Particle * ) giveNode(3);
566  p [ 2 ].x += kxa + kxa * defScale * ( nodeC->giveDofWithID(D_u)->giveUnknown(VM_Total, tStep) ) + kyb * defScale * ( nodeC->giveDofWithID(R_u)->giveUnknown(VM_Total, tStep) );
567  p [ 2 ].y += kyb + kyb * defScale * ( nodeC->giveDofWithID(D_v)->giveUnknown(VM_Total, tStep) ) + kzc * defScale * ( nodeC->giveDofWithID(R_v)->giveUnknown(VM_Total, tStep) );
568  p [ 2 ].z += kzc + kzc * defScale * ( nodeC->giveDofWithID(D_w)->giveUnknown(VM_Total, tStep) ) + kxa * defScale * ( nodeC->giveDofWithID(R_w)->giveUnknown(VM_Total, tStep) );
569  }
570  } else {
571  // use initial geometry
572  p [ 0 ].x = nodeA->giveCoordinate(1);
573  p [ 0 ].y = nodeA->giveCoordinate(2);
574  p [ 0 ].z = nodeA->giveCoordinate(3);
575  p [ 2 ].x = nodeB->giveCoordinate(1);
576  p [ 2 ].y = nodeB->giveCoordinate(2);
577  p [ 2 ].z = nodeB->giveCoordinate(3);
578  // handle special elements crossing the boundary of the periodic cell
579  if ( giveNumberOfNodes() == 3 ) {
580  p [ 2 ].x += kxa;
581  p [ 2 ].y += kyb;
582  p [ 2 ].z += kzc;
583  }
584  }
585 
586 
587  double r1 = nodeA->giveRadius();
588  double r2 = nodeB->giveRadius();
589  double d = 0.1 * ( r1 + r2 );
590  p [ 1 ].x = 0.5 * ( p [ 0 ].x + p [ 2 ].x - d * lcs.at(2, 1) - d * lcs.at(3, 1) );
591  p [ 1 ].y = 0.5 * ( p [ 0 ].y + p [ 2 ].y - d * lcs.at(2, 2) - d * lcs.at(3, 2) );
592  p [ 1 ].z = 0.5 * ( p [ 0 ].z + p [ 2 ].z - d * lcs.at(2, 3) - d * lcs.at(3, 3) );
593  p [ 3 ].x = p [ 1 ].x + d *lcs.at(2, 1);
594  p [ 3 ].y = p [ 1 ].y + d *lcs.at(2, 2);
595  p [ 3 ].z = p [ 1 ].z + d *lcs.at(2, 3);
596 
597  for ( int i = 5; i < 8; i += 2 ) {
598  p [ i ].x = p [ i - 4 ].x + d *lcs.at(3, 1);
599  p [ i ].y = p [ i - 4 ].y + d *lcs.at(3, 2);
600  p [ i ].z = p [ i - 4 ].z + d *lcs.at(3, 3);
601  }
602 
603  p [ 4 ] = p [ 0 ];
604  p [ 6 ] = p [ 2 ];
605 
606  GraphicObj *go = CreateHexahedronWD(p, s);
607 
608  EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
609  EASValsSetLineWidth(2 * OOFEG_DEFORMED_GEOMETRY_WIDTH);
610  EASValsSetFillStyle(FILL_SOLID);
611 
612  //EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, go);
613  EGWithMaskChangeAttributes(WIDTH_MASK | FILL_MASK | LAYER_MASK, go);
614  EMAddGraphicsToModel(ESIModel(), go);
615 }
616 #endif
617 } // namespace oofem
CrossSection * giveCrossSection()
Definition: element.C:495
int testElementGraphicActivity(Element *)
Test if particular element passed fulfills various filtering criteria for its graphics output...
IntArray dofManArray
Array containing dofmanager numbers.
Definition: element.h:151
virtual int giveIPValue(FloatArray &answer, GaussPoint *gp, InternalStateType type, TimeStep *tStep)
Returns the integration point corresponding value in full form.
void beVectorProductOf(const FloatArray &v1, const FloatArray &v2)
Computes vector product (or cross product) of vectors given as parameters, , and stores the result in...
Definition: floatarray.C:415
Class and object Domain.
Definition: domain.h:115
#define _IFT_CohSur3d_ky
Definition: cohsur3d.h:44
FloatMatrix lcs
Matrix defining the local coordinate system.
Definition: cohsur3d.h:61
double & at(int i)
Coefficient access function.
Definition: floatarray.h:131
virtual void drawDeformedGeometry(oofegGraphicContext &gc, TimeStep *tStep, UnknownType)
Definition: cohsur3d.C:478
#define OOFEG_RAW_GEOMETRY_LAYER
double giveRadius() const
Returns the radius of the particle.
Definition: particle.h:75
oofem::oofegGraphicContext gc[OOFEG_LAST_LAYER]
virtual double giveUnknown(ValueModeType mode, TimeStep *tStep)=0
The key method of class Dof.
virtual void drawRawGeometry(oofegGraphicContext &gc, TimeStep *tStep)
Definition: cohsur3d.C:434
virtual double giveCoordinate(int i)
Definition: node.C:82
Class implementing spherical particles as special nodes having a certain radius.
Definition: particle.h:52
Class implementing an array of integers.
Definition: intarray.h:61
MatResponseMode
Describes the character of characteristic material matrix.
#define _IFT_CohSur3d_kx
Definition: cohsur3d.h:43
virtual double computeVolumeAround(GaussPoint *gp)
Returns volume related to given integration point.
Definition: cohsur3d.C:217
#define OOFEG_DEFORMED_GEOMETRY_LAYER
virtual IRResultType initializeFrom(InputRecord *ir)
Initializes receiver according to object description stored in input record.
Definition: cohsur3d.C:364
virtual int giveNumberOfNodes() const
Returns number of nodes of receiver.
Definition: element.h:662
InternalStateType giveIntVarType()
Abstract base class for all "structural" finite elements.
virtual void computeStressVector(FloatArray &answer, const FloatArray &strain, GaussPoint *gp, TimeStep *tStep)
Computes the stress vector of receiver at given integration point, at time step tStep.
Definition: cohsur3d.C:231
virtual void drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
Definition: cohsur3d.C:530
virtual int computeGlobalCoordinates(FloatArray &answer, const FloatArray &lcoords)
Computes the global coordinates from given element&#39;s local coordinates.
Definition: cohsur3d.C:426
FloatArray center
Coordinates of the center of the cohesive surface.
Definition: cohsur3d.h:60
virtual void computeConstitutiveMatrixAt(FloatMatrix &answer, MatResponseMode rMode, GaussPoint *gp, TimeStep *tStep)
Computes constitutive matrix of receiver.
Definition: cohsur3d.C:238
REGISTER_Element(LSpace)
#define _IFT_CohSur3d_kz
Definition: cohsur3d.h:45
#define OOFEG_RAW_GEOMETRY_WIDTH
UnknownType
Type representing particular unknown (its physical meaning).
Definition: unknowntype.h:55
void times(double f)
Multiplies receiver by factor f.
Definition: floatmatrix.C:1594
virtual double giveUpdatedCoordinate(int ic, TimeStep *tStep, double scale=1.)
Returns updated ic-th coordinate of receiver.
Definition: node.C:245
Base class for all structural interface cross section models.
double at(int i, int j) const
Coefficient access function.
Definition: floatmatrix.h:176
virtual int setupIntegrationPoints(IntegrationRule &irule, int npoints, Element *element)
Sets up integration rule for the given element.
Definition: crosssection.C:54
#define _IFT_CohSur3d_area
Definition: cohsur3d.h:46
Class representing vector of real numbers.
Definition: floatarray.h:82
Implementation of matrix containing floating point numbers.
Definition: floatmatrix.h:94
IRResultType
Type defining the return values of InputRecord reading operations.
Definition: irresulttype.h:47
void evaluateLocalCoordinateSystem()
Definition: cohsur3d.C:315
void resize(int rows, int cols)
Checks size of receiver towards requested bounds.
Definition: floatmatrix.C:1358
Class representing the general Input Record.
Definition: inputrecord.h:101
Dof * giveDofWithID(int dofID) const
Returns DOF with given dofID; issues error if not present.
Definition: dofmanager.C:119
#define OOFEG_DEFORMED_GEOMETRY_WIDTH
std::vector< std::unique_ptr< IntegrationRule > > integrationRulesArray
List of integration rules of receiver (each integration rule contains associated integration points a...
Definition: element.h:170
void zero()
Zeroes all coefficient of receiver.
Definition: floatmatrix.C:1326
CohesiveSurface3d(int n, Domain *d)
Definition: cohsur3d.C:56
virtual void computeBmatrixAt(GaussPoint *gp, FloatMatrix &answer, int li, int ui)
Computes the geometrical matrix of receiver in given integration point.
Definition: cohsur3d.C:67
void updateFringeTableMinMax(double *s, int size)
virtual void giveDofManDofIDMask(int inode, IntArray &answer) const
Returns dofmanager dof mask for node.
Definition: cohsur3d.C:224
#define IR_GIVE_OPTIONAL_FIELD(__ir, __value, __id)
Macro facilitating the use of input record reading methods.
Definition: inputrecord.h:78
void beProductOf(const FloatMatrix &a, const FloatMatrix &b)
Assigns to the receiver product of .
Definition: floatmatrix.C:337
int giveSize() const
Definition: intarray.h:203
the oofem namespace is to define a context or scope in which all oofem names are defined.
Class implementing node in finite element mesh.
Definition: node.h:87
#define IR_GIVE_FIELD(__ir, __value, __id)
Macro facilitating the use of input record reading methods.
Definition: inputrecord.h:69
int giveNumber() const
Definition: femcmpnn.h:107
double normalize()
Normalizes receiver.
Definition: floatarray.C:828
Node * giveNode(int i) const
Returns reference to the i-th node of element.
Definition: element.h:610
#define OOFEG_VARPLOT_PATTERN_LAYER
virtual IRResultType initializeFrom(InputRecord *ir)
Initializes receiver according to object description stored in input record.
Class representing integration point in finite element program.
Definition: gausspoint.h:93
virtual void computeGaussPoints()
Initializes the array of integration rules member variable.
Definition: cohsur3d.C:205
#define OOFEM_WARNING(...)
Definition: error.h:62
Class representing solution step.
Definition: timestep.h:80
int numberOfDofMans
Number of dofmanagers.
Definition: element.h:149
Class representing Gaussian-quadrature integration rule.
void resize(int s)
Resizes receiver towards requested size.
Definition: floatarray.C:631

This page is part of the OOFEM documentation. Copyright (c) 2011 Borek Patzak
Project e-mail: info@oofem.org
Generated at Tue Jan 2 2018 20:07:27 for OOFEM by doxygen 1.8.11 written by Dimitri van Heesch, © 1997-2011