Node-cut example

The example shows explicit direct integration analysis of simple structure with two DOFs. The geometry and partitioning is sketched in fig. 6.3.

Figure 6.3: Node-cut partitioning example: (a) whole geometry, (b) partition 0, (c) partition 1.
\includegraphics[width=0.7\textwidth]{poofem_ex01}

#
# partition 0
#
partest.out.0
Parallel test of explicit oofem computation
#
NlDEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0
domain 2dTruss
#
OutputManager tstep_all dofman_all element_all
ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 1 nset 4
#
Node 1 coords 3 0. 0. 0.
Node 2 coords 3 0. 0. 2. Shared partitions 1 1
Truss2d 1 nodes 2 1 2
Set 1 elements 1 1
Set 2 nodes 2 1 2
Set 3 nodes 1 1
Set 4 nodes 0
SimpleCS 1 thick 0.1 width 10.0 material 1 set 1
IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2
BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 f(t) 1.0

#
# partition 1
#
partest.out.1
Parallel test of explicit oofem computation
#
NlDEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0
domain 2dTruss
#
OutputManager tstep_all dofman_all element_all
ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 1 nset 4
#
Node 2 coords 3 0. 0. 2. Shared partitions 1 0
Node 3 coords 3 0. 0. 4.
Truss2d 2 nodes 2 2 3
Set 1 elements 1 2
Set 2 nodes 2 2 3
Set 3 nodes 0
Set 4 nodes 1 3
SimpleCS 1 thick 0.1 width 10.0 material 1 set 1
IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2
BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 f(t) 1.0



Borek Patzak
2018-01-02