![]() |
(245) |
Evolution of hydration degree under isothemal curing conditions is approximated by several models. Scaling from a reference temperature to arbitrary temperature is based on Arrhenius equation, which coincides with the maturity method approach. The equivalent time, , is defined as time under constant reference (isothermal) temperature
![]() |
![]() |
![]() |
(246) |
![]() |
![]() |
![]() |
(247) |
The hydrationmodeltype = 1 is based on exponential approximation of hydration degree [23]. Equivalent time increment is added in each time step. Thus all the thermal history is stored in the equivalent time
The hydrationmodeltype = 2 is inspired by Cervera et al. [6], who proposed an analytical form of the normalized affinity which was refined in [7]. A slightly modified formulation is proposed here. The affinity model is formulated for a reference temperature 25
|
Fig. (15) shows mutual comparison of three hydration models implemented in OOFEM. Parameters for exponential model according to Eq. (248) are
s,
,
. Parameters for affinity model according to Eq. (249) are
s
,
,
,
.
![]() |
Borek Patzak