Czech Technical University in Prague Faculty of Civil Engineering Department of Mechanics

Contact Mechanics in OOFEM
 OOFEM Meeting Presentation

Ondřej Faltus

Tuesday $1^{\text {st }}$ February, 2022

Contents

Motivation: Contact Mechanics

Theory

The Contact Condition
Contact Discretization
Implementation overview
Node-to-Node Contact
Overview
Input File Example
The Resulting Analysis
Node-to-Segment Contact
Class Structure
Equations
The Contact Condition Classes
The Contact Segment Classes
Geometrical Nonlinearity

Examples

The Hertz Experiment Rigid Flat Punch Problem Geometrically nonlinear 2D contact Geometrically nonlinear 3D contact
Conclusions and Future

Motivation: Contact Mechanics

- Initially studied: Heinrich Hertz, 1881, contact of elliptic elastic rigid bodies without friction
- Only selected special cases have analytical solutions
- Many practical applications (mechanical, civil engineering, material science)
- Since the 1960s: FEM and contact algorithms
- Progress in hardware enables solution of more complicated contact cases
- Many cases and many approaches to FEM simulation
- Contact with or without friction
- Different FEM discretizations
- Different handling of the contact condition
- We have a system in equilibrium, see figure
- Equilibrium expressed in terms of energy:

$$
\begin{equation*}
W(u)=\frac{1}{2} k u^{2}-m g u \rightarrow \min \tag{1}
\end{equation*}
$$

- Introduction of an additional contact condition \rightarrow deformation constraint penetration function:

$$
\begin{equation*}
c(u)=u-h \leq 0 \tag{2}
\end{equation*}
$$

Figure: A mass on a spring with a contact condition

- Introduction of the contact condition into the energy functional: two approaches
- Lagrangian multiplier (LM) method:

$$
\begin{equation*}
L(u, \lambda)=W(u)+\lambda c(u) \tag{3}
\end{equation*}
$$

- Penalty method:

$$
\begin{equation*}
W_{p}(u)=W(u)+\frac{1}{2} p c^{2}(u) \tag{4}
\end{equation*}
$$

- Lagrangian multiplier method
- Allows for a precise solution
- A new variable introduced for each contact point
- The very existence of this variable is contact-condition-dependent
- Penalty method
- Imprecise solution (precise for $p \rightarrow \infty$)
- Large penalty precise enough, yet unwieldy for the solver
- Precision vs ease of solving conflict
- FEM: physical space discretized into elements and nodes
- Contact condition introduction depends on what contacts with what
- NTN - node to node
- easiest, simple projection
- linear geometry only
- NTS - node to segment
- nonlinear geometries possible
- more complicated contact search
- segment, typically, is an element boundary
- analytical function as a segment - simulates a rigid obstacle
- STS - segment to segment - future

Implementation overview

- node-2-node contact conditions functional in 2D and 3D (penalty and LM)
- node-2-segment contact conditions for linear 2D (penalty and LM)
- available contact segments include element edges and analytical functions (circle, polynomial)
- node-2-segment contact conditions for geometrically nonlinear 2D (plane strain) and 3D simulations - only penalty method for now

Node-to-Node Contact

- Implementationally simple
- two new classes: Node2NodePenaltyContact and Node2NodeLagrangianMultiplierContact
- inherited from ActiveBoundaryCondition
- Node pairings are user-specified
- Unsuitable for geometrical nonlinearity for obvious reasons

Node-to-Node Contact
 Input File Example

```
# BCS
BoundaryCondition 1 loadTimeFunction 1 values 3 0.00.00.0 dofs 3 1 2 3 set l
BoundaryCondition 2 loadTimeFunction 1 values 3 0.0 0.0 -0.05 dofs 3 1 2 3 set 2
n2npenaltycontact 3 loadTimeFunction 2 penalty l.e8 masterset 2 slaveset 3 usetangent normal 3 0 0 l |
# TIME FUNCTIONS
PiecewiseLinFunction 1 npoints 3 t 3-10. 500 f(t) 3 0 1 501
ConstantFunction 2 f(t) 1.0
# SETS
# fixed nodes
Set 1 nodes 8 1 2 3 4 15 16 17 18
# nodes to be moved = masterset
Set 2 nodes 4 11 12 13 14
# slaveset
Set 3 nodes 45 6 7 8
```

Figure: Input file for node-to-node contact

The optional normal keyword defines a prescribed normal direction (master to slave) of the contact, overwrites the usual procedure for computing it from reference node coordinates

Node-to-Node Contact

The Resulting Analysis

Node-to-Segment Contact

Class Structure

Figure: Class structure in OOFEM for node-to-segment contact

Node-to-Segment Contact

- The universal equations for the internal forces and tangent stiffness in node-to-segment contact:

$$
\begin{align*}
\boldsymbol{f}_{c} & =\int_{\Gamma_{c}} p g_{c} \boldsymbol{N}_{v} \mathrm{~d} \Gamma \tag{5}\\
\boldsymbol{K}_{c} & =\int_{\Gamma_{c}} p \boldsymbol{N}_{v}^{T} \boldsymbol{N}_{v}+p g_{c}\left(\boldsymbol{B}_{v, \alpha} \boldsymbol{D}_{v, \alpha}^{T}+\boldsymbol{D}_{v, \alpha} \boldsymbol{B}_{v, \alpha}^{T}\right. \tag{6}\\
& \left.+\kappa_{\alpha \beta} \boldsymbol{D}_{v, \beta} \boldsymbol{D}_{v, \alpha}^{T}+g_{c} m^{\alpha \beta} \overline{\boldsymbol{B}}_{v, \alpha} \overline{\boldsymbol{B}}_{v, \beta}^{T}\right) \mathrm{d} \Gamma
\end{align*}
$$

- Division of responsibilities between the contact segment classes, which supply the different submatrices, and the contact condition class which puts it all together

Node-to-Segment Contact

- defined in input files similarly to the node-to-node case
- remembers node and segments. In this case, all nodes are tested for contact against all segments
- does not use sets to define nodes and segments

```
# BCS
BoundaryCondition 1 loadTimeFunction 1 values 3 0.0 0.0 0.0 dofs 3 1 2 3 set 1
BoundaryCondition 2 loadTimeFunction 1 values 3 0.0 0.0-0.005 dofs 3 1 2 3 set 2
n2spenaltycontact 3 loadTimeFunction 2 penalty l.e4 nodeset 1 9 segmentset 1 1 usetangent
# TIME FUNCTIONS
PiecewiseLinFunction 1 npoints 3 t 3 -1 0. 500 f(t) 3 0 1 501
ConstantFunction 2 f(t) 1.0
# SETS
# fixed nodes
Set 1 nodes 7 1 2 3 4 15 16 17
# nodes to be moved = masterset
Set 2 nodes 1 1l
# set of boundaries
Set 3 elementboundaries 2 1 1
```

Figure: Input file excerpt for node-to-segment contact conditions

Node-to-Segment Contact

The Contact Segment Classes

- a new type of object, between elements and materials
- various types
- the boundary segments use boundary sets to enumerate the element boundaries they contain (one segment may contain multiple, typically an entire face of the meshed object)

```
ndofman }12\mathrm{ nelem 2 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 2 nset 3 ncontactseg 1
# NODES
# Element 1 (lower)
Node 1 coords 3 0 0 0
Node 2 coords 3 1 0 0
Node 3 coords 3 1 1 0
Node 4 coords 3 0 1 0
Node 5 coords 3 0 0 1
Node 6 coords 3 1 0 1
Node 7 coords 3 1 1 1
Node 8 coords 3 0 1 1
# Element 2 (upper)
Node 11 coords 3 0.75 0.75 1.1
Node 15 coords 3 0 0 2.1
Node 16 coords 3 1 0 2.1
Node 17 coords 3 0.5 1 2.1
# ELEMENTS
LSpace 1 nodes 8 8 7 6 5 4 3 2 1 mat 1 crossSect 1 nlgeo 1
LTRSpace 2 nodes 4 17 16 15 11 mat 1 crossSect 1 nlgeo 1
# CONTACT SEGMENTS
linear3delementsurfacecontactsegment 1 boundaryset 3
```

Figure: Input file excerpt for node-to-segment contact segments

Node-to-Segment Contact

The Contact Segment Classes

Figure: An UML diagram of existing contact segment classes

Node-to-Segment Contact

- introduction of geometrical nonlinearity brings some challenges, and necessitates changes and additions to element interpolation classes:
- Closest point projection procedure: implementation of global-to-boundary-local coordinate conversion for 2D and 3D elements - now solved by a universal NR iteration in the contact segment class
- Determination of surface normal in deformed configuration: as a vector cross product of tangential vectors, which have to be provided by element surface - there is now inconsistency in the normal vector direction among different elements and element surfaces (the direction is dependent on the order of nodes in the element definition)
- By Heinrich Hertz, 1881 - formulated the analytical solution
- Conditions:
- Two elastic bodies are touching by opposite convex surfaces
- Contact area is very small in comparison to the size of the bodies
- No friction
- Here a cyllinder and a prism, 2D simulation
- Maximum pressure on the contact area and the contact area width are given analytically as

$$
\begin{align*}
p_{0} & =\sqrt{\frac{F E}{2 \pi R}} \tag{7}\\
a & =\sqrt{\frac{8 F R}{\pi E}} \tag{8}
\end{align*}
$$

Tabulka: The Hertz Experiment: Correlation of numerical results for elastic bodies

Computation	Max. Contact Pressure p_{0}	Contact Area Width a
Analytic	11337 MPa	19.64 mm
NTN Analysis	11142 MPa	19.59 mm
NTS Analysis	10647 MPa	19.55 mm

Examples

The Hertz Experiment

(a) NTN Discretization

(b) NTS Discretization

Figure: The Hertz experiment: Comparison of the NTN and NTS discretizations

Tabulka: The Hertz Experiment: Correlation of numerical results for a rigid obstacle

Computation	Max. Contact Pressure p_{0}	Contact Area Width a
Analytic	20994 MPa	27.22 mm
Rigid Body	20556 MPa	26.54 mm
Analytical Function	20556 MPa	26.54 mm

Examples

The Hertz Experiment

$\begin{array}{ll}\text { (a) Rigid body } & \text { (b) Analytical function }\end{array}$

Figure: The Hertz experiment: Different variants of rigid obstacle simulation

Examples

Rigid Flat Punch Problem

Figure: Deformed mesh 20-198F

Figure: Stress tensor norm on the 20-198F mesh

Figure: Deformed mesh 40-3192FX

Examples

Rigid Flat Punch Problem

Figure: Stress tensor norm on the 40-3192FX mesh

Examples

Figure: Rigid flat punch problem: Pressure distribution comparison among all

- Two 2D beams
- Doubled contact condition (each for one set of nodes and the opposite set of segments)

Figure: Mesh

Examples

To demonstrate the ability of enforcing contact on the 3D element surface, consider a linear-wedge and linear-brick element as pictured. The triangular surface of the wedge is linear, while the quadrangular surface of the brick is bilinear.

Examples

Conclusions and Future

- All classes should have in-code documentation now; there are some tests for the simpler cases as well (not for the newest 3D cases)
- The new segment class for 3D and the associated changes in the contact condition could use some code cleanup and optimization
- Lagrangian multipliers have been neglected
- Most urgent extension: either a segment-to-segment condition or a friction model

Thank You for Your attention

