Czech Technical University in Prague Faculty of Civil Engineering Department of Mechanics

Contact Mechanics in OOFEM OOFEM Meeting Presentation

Ondřej Faltus

Tuesday 1st February, 2022

Contents

Motivation: Contact Mechanics

Theory

The Contact Condition Contact Discretization

Implementation overview

Node-to-Node Contact

Overview Input File Example The Resulting Analysis

Node-to-Segment Contact

Class Structure Equations The Contact Condition Classes The Contact Segment Classes Geometrical Nonlinearity

Examples

The Hertz Experiment Rigid Flat Punch Problem Geometrically nonlinear 2D contact Geometrically nonlinear 3D contact

Conclusions and Future

Motivation: Contact Mechanics

- Initially studied: Heinrich Hertz, 1881, contact of elliptic elastic rigid bodies without friction
- Only selected special cases have analytical solutions
- Many practical applications (mechanical, civil engineering, material science)
- Since the 1960s: FEM and contact algorithms
- Progress in hardware enables solution of more complicated contact cases
- Many cases and many approaches to FEM simulation
 - Contact with or without friction
 - Different FEM discretizations
 - Different handling of the contact condition

- We have a system in equilibrium, see figure
- Equilibrium expressed in terms of energy:

$$W(u) = \frac{1}{2}ku^2 - mgu \rightarrow \min$$
 (1)

$$c(u) = u - h \le 0 \tag{2}$$

Figure: A mass on a spring with a contact condition

- Introduction of the contact condition into the energy functional: two approaches
 - Lagrangian multiplier (LM) method:

$$L(u,\lambda) = W(u) + \lambda c(u)$$
(3)

Penalty method:

$$W_{p}(u) = W(u) + \frac{1}{2}pc^{2}(u)$$
 (4)

- Lagrangian multiplier method
 - Allows for a precise solution
 - A new variable introduced for each contact point
 - The very existence of this variable is contact-condition-dependent
- Penalty method
 - Imprecise solution (precise for $p \to \infty$)
 - Large penalty precise enough, yet unwieldy for the solver
 - Precision vs ease of solving conflict

- FEM: physical space discretized into elements and nodes
- Contact condition introduction depends on what contacts with what
- NTN node to node
 - easiest, simple projection
 - linear geometry only
- NTS node to segment
 - nonlinear geometries possible
 - more complicated contact search
 - segment, typically, is an element boundary
 - analytical function as a segment simulates a rigid obstacle
- STS segment to segment future

- node-2-node contact conditions functional in 2D and 3D (penalty and LM)
- node-2-segment contact conditions for linear 2D (penalty and LM)
- available contact segments include element edges and analytical functions (circle, polynomial)
- node-2-segment contact conditions for geometrically nonlinear 2D (plane strain) and 3D simulations - only penalty method for now

- Implementationally simple
 - two new classes: Node2NodePenaltyContact and Node2NodeLagrangianMultiplierContact
 - inherited from ActiveBoundaryCondition
- Node pairings are user-specified
- Unsuitable for geometrical nonlinearity for obvious reasons


```
# BCS
BoundaryCondition 1 loadTimeFunction 1 values 3 0.0 0.0 0.0 dofs 3 1 2 3 set 1
BoundaryCondition 2 loadTimeFunction 1 values 3 0.0 0.0 -0.05 dofs 3 1 2 3 set 2
n3ppenaltycontact 3 loadTimeFunction 2 penalty 1.e8 masterset 2 slaveset 3 usetangent normal 3 0 0 1
# TIME FUNCTIONS
PlacewiseLinFunction 1 npoints 3 t 3 -1 0. 500 f(t) 3 0 1 501
ConstantFunction 2 f(t) 1.0
# SETS
# fixed nodes
Set 1 nodes 8 1 2 3 4 15 16 17 18
# nodes to be moved = masterset
Set 2 nodes 4 11 12 13 14
# slaveset
Set 3 nodes 4 5 6 7 8
```

Figure: Input file for node-to-node contact

The optional *normal* keyword defines a prescribed normal direction (master to slave) of the contact, overwrites the usual procedure for computing it from reference node coordinates

Node-to-Segment Contact Class Structure

Figure: Class structure in OOFEM for node-to-segment contact

The universal equations for the internal forces and tangent stiffness in node-to-segment contact:

$$f_{c} = \int_{\Gamma_{c}} pg_{c} \mathbf{N}_{v} \, \mathrm{d}\Gamma$$

$$K_{c} = \int_{\Gamma_{c}} p\mathbf{N}_{v}^{T} \mathbf{N}_{v} + pg_{c} \left(\mathbf{B}_{v,\alpha} \mathbf{D}_{v,\alpha}^{T} + \mathbf{D}_{v,\alpha} \mathbf{B}_{v,\alpha}^{T} \right)$$

$$+ \kappa_{\alpha\beta} \mathbf{D}_{v,\beta} \mathbf{D}_{v,\alpha}^{T} + g_{c} m^{\alpha\beta} \bar{\mathbf{B}}_{v,\alpha} \bar{\mathbf{B}}_{v,\beta}^{T} \right) \, \mathrm{d}\Gamma$$
(5)

Division of responsibilities between the contact segment classes, which supply the different submatrices, and the contact condition class which puts it all together

- defined in input files similarly to the node-to-node case
- remembers node and segments. In this case, all nodes are tested for contact against all segments
- does not use sets to define nodes and segments

```
# BCS
BoundaryCondition 1 loadTimeFunction 1 values 3 0.0 0.0 0.0 dofs 3 1 2 3 set 1
BoundaryCondition 2 loadTimeFunction 1 values 3 0.0 0.0 -0.005 dofs 3 1 2 3 set 2
n2spenaltycontact 3 loadTimeFunction 2 penalty 1.e4 nodeset 1 9 segmentset 1 1 usetangent
# TIME FUNCTIONS
PlacewiseLinFunction 1 npoints 3 t 3 -1 0. 500 f(t) 3 0 1 501
ConstantFunction 2 f(t) 1.0
# SETS
# fixed nodes
Set 1 nodes 7 1 2 3 4 15 16 17
# nodes to be moved = masterset
Set 2 nodes 1 11
# set of boundaries
Set 3 elementboundaries 2 1 1
```

Figure: Input file excerpt for node-to-segment contact conditions

Node-to-Segment Contact The Contact Segment Classes

- a new type of object, between elements and materials
- various types
- the boundary segments use boundary sets to enumerate the element boundaries they contain (one segment may contain multiple, typically an entire face of the meshed object)

```
ndofman 12 nelem 2 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 2 nset 3 ncontactseg 1
# NODES
# Element 1 (lower)
Node 1 coords 3 0 0 0
Node 2 coords 3 1 0 0
Node 3 coords 3 1 1 0
Node 4 coords 3 0 1 0
Node 5 coords 3 0 0 1
Node 6 coords 3 1 0 1
Node 7 coords 3 1 1 1
Node 8 coords 3 0 1 1
# Element 2 (upper)
Node 11 coords 3 0.75 0.75 1.1
Node 15 coords 3 0 0 2.1
Node 16 coords 3 1 0 2.1
Node 17 coords 3 0.5 1 2.1
# ELEMENTS
LSpace 1 nodes 8 8 7 6 5 4 3 2 1 mat 1 crossSect 1 nlgeo 1
LTRSpace 2 nodes 4 17 16 15 11 mat 1 crossSect 1 nlgeo 1
# CONTACT SEGMENTS
linear3delementsurfacecontactsegment 1 boundaryset 3
```

Figure: Input file excerpt for node-to-segment contact segments

Node-to-Segment Contact The Contact Segment Classes

15

Figure: An UML diagram of existing contact segment classes

- introduction of geometrical nonlinearity brings some challenges, and necessitates changes and additions to element interpolation classes:
- Closest point projection procedure: implementation of global-to-boundary-local coordinate conversion for 2D and 3D elements - now solved by a universal NR iteration in the contact segment class
- Determination of surface normal in deformed configuration: as a vector cross product of tangential vectors, which have to be provided by element surface - there is now inconsistency in the normal vector direction among different elements and element surfaces (the direction is dependent on the order of nodes in the element definition)

- ▶ By Heinrich Hertz, 1881 formulated the analytical solution
- Conditions:
 - Two elastic bodies are touching by opposite convex surfaces
 - Contact area is very small in comparison to the size of the bodies
 - No friction
- Here a cyllinder and a prism, 2D simulation
- Maximum pressure on the contact area and the contact area width are given analytically as

$$p_{0} = \sqrt{\frac{FE}{2\pi R}}$$
(7)
$$a = \sqrt{\frac{8FR}{\pi E}}$$
(8)

Tabulka: The Hertz Experiment: Correlation of numerical results for elastic bodies

Computation	Max. Contact Pressure p_0	Contact Area Width a
Analytic	11 337 MPa	19.64 mm
NTN Analysis	11 142 MPa	19.59 mm
NTS Analysis	10647 MPa	19.55 mm

Examples The Hertz Experiment

(a) NTN Discretization

(b) NTS Discretization

Figure: The Hertz experiment: Comparison of the NTN and NTS discretizations

Tabulka: The Hertz Experiment: Correlation of numerical results for a rigid obstacle

Computation	Max. Contact Pressure p_0	Contact Area Width a
Analytic	20 994 MPa	27.22 mm
Rigid Body	20 556 MPa	$26.54\mathrm{mm}$
Analytical Function	20 556 MPa	26.54 mm

Examples The Hertz Experiment

(a) Rigid body

(b) Analytical function

Figure: The Hertz experiment: Different variants of rigid obstacle simulation

Figure: Deformed mesh 20-198F

Examples Rigid Flat Punch Problem

Figure: Stress tensor norm on the 20-198F mesh

Examples Rigid Flat Punch Problem

24

Figure: Deformed mesh 40-3192FX

Figure: Stress tensor norm on the 40-3192FX mesh

Examples Rigid Flat Punch Problem

26

Figure: Rigid flat punch problem: Pressure distribution comparison among all Ondrei Transhest Mechanics in OOFEM

- Two 2D beams
- Doubled contact condition (each for one set of nodes and the opposite set of segments)

Figure: Mesh

To demonstrate the ability of enforcing contact on the 3D element surface, consider a linear-wedge and linear-brick element as pictured. The triangular surface of the wedge is linear, while the quadrangular surface of the brick is bilinear.

- All classes should have in-code documentation now; there are some tests for the simpler cases as well (not for the newest 3D cases)
- The new segment class for 3D and the associated changes in the contact condition could use some code cleanup and optimization
- Lagrangian multipliers have been neglected
- Most urgent extension: either a segment-to-segment condition or a friction model

Thank You for Your attention